IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v33y2013icp159-163.html
   My bibliography  Save this article

Some results about the exponential ordering of inactivity time

Author

Listed:
  • Kayid, M.
  • Alamoudi, L.

Abstract

The purpose of this paper is to study new notions of stochastic comparisons and aging classes based on the exponential order. We provide some preservation properties of the exponential order of inactivity time under the reliability operations of convolution and mixture. Some applications to shock models are discussed.

Suggested Citation

  • Kayid, M. & Alamoudi, L., 2013. "Some results about the exponential ordering of inactivity time," Economic Modelling, Elsevier, vol. 33(C), pages 159-163.
  • Handle: RePEc:eee:ecmode:v:33:y:2013:i:c:p:159-163
    DOI: 10.1016/j.econmod.2013.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313001338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2013.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel, 2001. "Laplace transform ordering of actuarial quantities," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 83-102, August.
    2. A-Hameed, M. S. & Proschan, F., 1973. "Nonstationary shock models," Stochastic Processes and their Applications, Elsevier, vol. 1(4), pages 383-404, October.
    3. Pellerey, Franco & Shaked, Moshe, 1997. "Characterizations of the IFR and DFR aging notions by means of the dispersive order," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 389-393, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belzunce, Félix & Ortega, Eva & Ruiz, José M., 1999. "The Laplace order and ordering of residual lives," Statistics & Probability Letters, Elsevier, vol. 42(2), pages 145-156, April.
    2. Shaked, Moshe, 2007. "Stochastic comparisons of multivariate random sums in the Laplace transform order, with applications," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1339-1344, July.
    3. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    4. Dheeraj Goyal & Nil Kamal Hazra & Maxim Finkelstein, 2022. "On Properties of the Phase-type Mixed Poisson Process and its Applications to Reliability Shock Modeling," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2933-2960, December.
    5. Ji Hwan Cha & Jie Mi, 2011. "On a Stochastic Survival Model for a System Under Randomly Variable Environment," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 549-561, September.
    6. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    7. Dequan Yue & Jinhua Cao, 2001. "The NBUL class of life distribution and replacement policy comparisons," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(7), pages 578-591, October.
    8. Xia, Wanwan, 2019. "Partial monotonicity of entropy revisited," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 248-253.
    9. Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "A characterization of the multivariate excess wealth ordering," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 410-417.
    10. Hyunju Lee & Ji Hwan Cha, 2021. "A general multivariate new better than used (MNBU) distribution and its properties," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(1), pages 27-46, January.
    11. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    12. Belzunce, Felix & Ortega, Eva-Maria & Ruiz, Jose M., 2007. "On non-monotonic ageing properties from the Laplace transform, with actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 1-14, January.
    13. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    14. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    15. Soo-Haeng Cho & Xin Wang, 2017. "Newsvendor Mergers," Management Science, INFORMS, vol. 63(2), pages 298-316, February.
    16. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    17. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    18. Chen, Yunxia & Zhang, Wenbo & Xu, Dan, 2019. "Reliability assessment with varying safety threshold for shock resistant systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 49-60.
    19. Andrea C. Hupman & Jay Simon, 2023. "The Legacy of Peter Fishburn: Foundational Work and Lasting Impact," Decision Analysis, INFORMS, vol. 20(1), pages 1-15, March.
    20. Bhattacharyya, Dhrubasish & Khan, Ruhul Ali & Mitra, Murari, 2021. "Tests for Laplace order dominance with applications to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 163-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:33:y:2013:i:c:p:159-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.