IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i498p673-687.html
   My bibliography  Save this article

Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models

Author

Listed:
  • Wenguang Sun
  • Alexander C. McLain

Abstract

In large-scale studies, the true effect sizes often range continuously from zero to small to large, and are observed with heteroscedastic errors. In practical situations where the failure to reject small deviations from the null is inconsequential, specifying an indifference region (or forming composite null hypotheses) can greatly reduce the number of unimportant discoveries in multiple testing. The heteroscedasticity issue poses new challenges for multiple testing with composite nulls. In particular, the conventional framework in multiple testing, which involves rescaling or standardization, is likely to distort the scientific question. We propose the concept of a composite null distribution for heteroscedastic models and develop an optimal testing procedure that minimizes the false nondiscovery rate, subject to a constraint on the false discovery rate. The proposed approach is different from conventional methods in that the effect size, statistical significance, and multiplicity issues are addressed integrally. The external information of heteroscedastic errors is incorporated for optimal simultaneous inference. The new features and advantages of our approach are demonstrated using both simulated and real data. The numerical studies demonstrate that our new procedure enjoys superior performance with greater accuracy and better interpretability of results.

Suggested Citation

  • Wenguang Sun & Alexander C. McLain, 2012. "Multiple Testing of Composite Null Hypotheses in Heteroscedastic Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 673-687, June.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:673-687
    DOI: 10.1080/01621459.2012.664505
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.664505
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.664505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. Bentley MacLeod, 2017. "Viewpoint: The human capital approach to inference," Canadian Journal of Economics, Canadian Economics Association, vol. 50(1), pages 5-39, February.
    2. Jiaying Gu & Roger Koenker, 2017. "Rebayes: an R package for empirical bayes mixture methods," CeMMAP working papers CWP37/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Jiaying Gu & Roger Koenker, 2023. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Econometrica, Econometric Society, vol. 91(1), pages 1-41, January.
    4. Gómez-Villegas Miguel A. & Salazar Isabel & Sanz Luis, 2014. "A Bayesian decision procedure for testing multiple hypotheses in DNA microarray experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 49-65, February.
    5. Jiaying Gu & Roger Koenker, 2016. "On a Problem of Robbins," International Statistical Review, International Statistical Institute, vol. 84(2), pages 224-244, August.
    6. Mario Hasler, 2016. "Heteroscedasticity: multiple degrees of freedom vs. sandwich estimation," Statistical Papers, Springer, vol. 57(1), pages 55-68, March.
    7. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    8. Joshua Habiger & David Watts & Michael Anderson, 2017. "Multiple testing with heterogeneous multinomial distributions," Biometrics, The International Biometric Society, vol. 73(2), pages 562-570, June.
    9. Jiaying Gu & Roger Koenker, 2017. "Rebayes: an R package for empirical bayes mixture methods," CeMMAP working papers 37/17, Institute for Fiscal Studies.
    10. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.
    11. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:673-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.