IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v93y2016icp483-497.html
   My bibliography  Save this article

Noise peeling methods to improve boosting algorithms

Author

Listed:
  • Martinez, Waldyn
  • Gray, J. Brian

Abstract

Boosting refers to a family of methods that combine sequences of individual classifiers into highly accurate ensemble models through weighted voting. AdaBoost, short for “Adaptive Boosting”, is the most well-known boosting algorithm. AdaBoost has many strengths. Among them, there is sufficient empirical evidence pointing to its performance being generally superior to that of individual classifiers. In addition, even when combining a large number of weak learners, AdaBoost can be very robust to overfitting usually with lower generalization error than other competing ensemble methodologies, such as bagging and random forests. However, AdaBoost, as most hard margin classifiers, tends to be sensitive to outliers and noisy data, since it assigns observations that have been misclassified a higher weight in subsequent iterations. It has recently been proven that for any booster with a potential convex loss function, and any nonzero random classification noise rate, there is a data set, which can be efficiently learnable by the booster if there is no noise, but cannot be learned with accuracy better than 1/2 with random classification noise present. Several techniques to identify and potentially delete (peel) noisy samples in binary classification are proposed in order to improve the performance of AdaBoost. It is found that peeling methods generally perform better than AdaBoost and other noise resistant boosters, especially when high levels of noise are present in the data.

Suggested Citation

  • Martinez, Waldyn & Gray, J. Brian, 2016. "Noise peeling methods to improve boosting algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 483-497.
  • Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:483-497
    DOI: 10.1016/j.csda.2015.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001486
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chun-Xia & Zhang, Jiang-She, 2008. "A local boosting algorithm for solving classification problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1928-1941, January.
    2. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    3. Lutz, Roman Werner & Kalisch, Markus & Buhlmann, Peter, 2008. "Robustified L2 boosting," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3331-3341, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chun-Xia & Zhang, Jiang-She & Zhang, Gai-Ying, 2009. "Using Boosting to prune Double-Bagging ensembles," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1218-1231, February.
    2. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    3. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    4. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    5. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    6. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    7. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    8. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    9. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    10. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.
    11. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    13. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    14. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    15. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    16. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    17. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    18. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    19. Andrea Sciandra & Alessio Surian & Livio Finos, 2021. "Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 689-699, August.
    20. Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:483-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.