IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i2p140-150.html
   My bibliography  Save this article

A duscrete-time model of high-frequency stock returns

Author

Listed:
  • Takaki Hayashi

Abstract

A model of intraday financial time series is developed. The model is a dynamic factor model consisting of two equations. First, a rate of return of a 'stock' in a single day is assumed to be generated by serveral common factors plus some additive erros ('intraday equation'). Secondly, the joint distribution of those common factors is assumed to depend on the hidden state of the day, which fluctuates according to a Markov chain ('day-by-day equation'). Together the equations compose a hidden Markov model. We investigate properties of the model. Among them is a central limit theorem for cumulative returns, which agrees with the well-known empirical phenomenon in the stock markets that the distributions of longer-horizon returns are closer to the normal. We propose a two-step procedure consisting of the method of principal components and the EM algorithm to estimate the model parameters as well as the unboservable states. In addition, we propose a procedure for predicting intraday returns. Finally, the model is fitted to empirical data, the Standard&Poors 500 Index 5 min return data, to see if the model is capable of describing intraday movements of the index.

Suggested Citation

  • Takaki Hayashi, 2004. "A duscrete-time model of high-frequency stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 140-150.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:2:p:140-150
    DOI: 10.1080/14697680400000018
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680400000018
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680400000018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolano, Danilo & Berchtold, André, 2016. "General framework and model building in the class of Hidden Mixture Transition Distribution models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 131-145.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:2:p:140-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.