IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v66y2004i1p145-163.html
   My bibliography  Save this article

Penalized triograms: total variation regularization for bivariate smoothing

Author

Listed:
  • Roger Koenker
  • Ivan Mizera

Abstract

Summary. Hansen, Kooperberg and Sardy introduced a family of continuous, piecewise linear functions defined over adaptively selected triangulations of the plane as a general approach to statistical modelling of bivariate densities and regression and hazard functions. These triograms enjoy a natural affine equivariance that offers distinct advantages over competing tensor product methods that are more commonly used in statistical applications. Triograms employ basis functions consisting of linear ‘tent functions’ defined with respect to a triangulation of a given planar domain. As in knot selection for univariate splines, Hansen and colleagues adopted the regression spline approach of Stone. Vertices of the triangulation are introduced or removed sequentially in an effort to balance fidelity to the data and parsimony. We explore a smoothing spline variant of the triogram model based on a roughness penalty adapted to the piecewise linear structure of the triogram model. We show that the roughness penalty proposed may be interpreted as a total variation penalty on the gradient of the fitted function. The methods are illustrated with real and artificial examples, including an application to estimated quantile surfaces of land value in the Chicago metropolitan area.

Suggested Citation

  • Roger Koenker & Ivan Mizera, 2004. "Penalized triograms: total variation regularization for bivariate smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 145-163, February.
  • Handle: RePEc:bla:jorssb:v:66:y:2004:i:1:p:145-163
    DOI: 10.1111/j.1467-9868.2004.00437.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2004.00437.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2004.00437.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:66:y:2004:i:1:p:145-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.