IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v82y2015icp35-46.html
   My bibliography  Save this article

Using retrospective sampling to estimate models of relationship status in large longitudinal social networks

Author

Listed:
  • O’Malley, A. James
  • Paul, Sudeshna

Abstract

Estimation of longitudinal models of relationship status between all pairs of individuals (dyads) in social networks is challenging due to the complex inter-dependencies among observations and lengthy computation times. To reduce the computational burden of model estimation, a method is developed that subsamples the “always-null” dyads in which no relationships develop throughout the period of observation. The informative sampling process is accounted for by weighting the likelihood contributions of the observations by the inverses of the sampling probabilities. This weighted-likelihood estimation method is implemented using Bayesian computation and evaluated in terms of its bias, efficiency, and speed of computation under various settings. Comparisons are also made to a full information likelihood-based procedure that is only feasible to compute when limited follow-up observations are available. Calculations are performed on two real social networks of very different sizes. The easily computed weighted-likelihood procedure closely approximates the corresponding estimates for the full network, even when using low sub-sampling fractions. The fast computation times make the weighted-likelihood approach practical and able to be applied to networks of any size.

Suggested Citation

  • O’Malley, A. James & Paul, Sudeshna, 2015. "Using retrospective sampling to estimate models of relationship status in large longitudinal social networks," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 35-46.
  • Handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:35-46
    DOI: 10.1016/j.csda.2014.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314002333
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola J. Cooper & Paul C. Lambert & Keith R. Abrams & Alexander J. Sutton, 2007. "Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis," Health Economics, John Wiley & Sons, Ltd., vol. 16(1), pages 37-56, January.
    2. Sudeshna Paul & A. James O'Malley, 2013. "Hierarchical longitudinal models of relationships in social networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 705-722, November.
    3. Michell, Lynn & Amos, Amanda, 1997. "Girls, pecking order and smoking," Social Science & Medicine, Elsevier, vol. 44(12), pages 1861-1869, June.
    4. Browne, William J. & Draper, David & Goldstein, Harvey & Rasbash, Jon, 2002. "Bayesian and likelihood methods for fitting multilevel models with complex level-1 variation," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 203-225, April.
    5. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    6. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    7. D. Pfeffermann & C. J. Skinner & D. J. Holmes & H. Goldstein & J. Rasbash, 1998. "Weighting for unequal selection probabilities in multilevel models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 23-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul, Sudeshna & Keating, Nancy L. & Landon, Bruce E. & O'Malley, A. James, 2014. "Results from using a new dyadic-dependence model to analyze sociocentric physician networks," Social Science & Medicine, Elsevier, vol. 117(C), pages 67-75.
    2. Paul, Sudeshna & Keating, Nancy L. & Landon, Bruce E. & O’Malley, A. James, 2015. "Reprint of: Results from using a new dyadic-dependence model to analyze sociocentric physician networks," Social Science & Medicine, Elsevier, vol. 125(C), pages 51-59.
    3. Sudeshna Paul & A. James O'Malley, 2013. "Hierarchical longitudinal models of relationships in social networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 705-722, November.
    4. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    5. Andreas Dzemski, 2019. "An Empirical Model of Dyadic Link Formation in a Network with Unobserved Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 763-776, December.
    6. Patacchini, Eleonora & Hsieh, Chih-Sheng & Lin, Xu, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    7. Peter D. Hoff, 2009. "Multiplicative latent factor models for description and prediction of social networks," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 261-272, December.
    8. Vishesh Karwa & Pavel N. Krivitsky & Aleksandra B. Slavković, 2017. "Sharing social network data: differentially private estimation of exponential family random-graph models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 481-500, April.
    9. Peter R. Herman, 2022. "Modeling complex network patterns in international trade," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 158(1), pages 127-179, February.
    10. Manuel E. Sosa & Steven D. Eppinger & Craig M. Rowles, 2004. "The Misalignment of Product Architecture and Organizational Structure in Complex Product Development," Management Science, INFORMS, vol. 50(12), pages 1674-1689, December.
    11. Cilem Selin Hazir & Corinne Autant-Bernard, 2012. "Using Affiliation Networks to Study the Determinants of Multilateral Research Cooperation Some empirical evidence from EU Framework Programs in biotechnology," Working Papers 1212, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    12. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    13. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    14. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    15. David Levinson & Arthur Huang, 2012. "A Positive Theory of Network Connectivity," Environment and Planning B, , vol. 39(2), pages 308-325, April.
    16. Lomi, Alessandro & Fonti, Fabio, 2012. "Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms," Economics Letters, Elsevier, vol. 114(2), pages 216-220.
    17. McMahon, James M. & Pouget, Enrique R. & Tortu, Stephanie, 2006. "A guide for multilevel modeling of dyadic data with binary outcomes using SAS PROC NLMIXED," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3663-3680, August.
    18. Gaonkar, Shweta & Mele, Angelo, 2023. "A model of inter-organizational network formation," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 82-104.
    19. Liu, Jie & Ge, Huilin, 2022. "Collaboration mechanisms and community detection of statisticians based on ERGMs and kNN-walktrap," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    20. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:35-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.