IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp25-37.html
   My bibliography  Save this article

Fast approximate L∞ minimization: Speeding up robust regression

Author

Listed:
  • Shen, Fumin
  • Shen, Chunhua
  • Hill, Rhys
  • van den Hengel, Anton
  • Tang, Zhenmin

Abstract

Minimization of the L∞ norm, which can be viewed as approximately solving the non-convex least median estimation problem, is a powerful method for outlier removal and hence robust regression. However, current techniques for solving the problem at the heart of L∞ norm minimization are slow, and therefore cannot be scaled to large problems. A new method for the minimization of the L∞ norm is presented here, which provides a speedup of multiple orders of magnitude for data with high dimension. This method, termed Fast L∞Minimization, allows robust regression to be applied to a class of problems which was previously inaccessible. It is shown how the L∞ norm minimization problem can be broken up into smaller sub-problems, which can then be solved extremely efficiently. Experimental results demonstrate the radical reduction in computation time, along with robustness against large numbers of outliers in a few model-fitting problems.

Suggested Citation

  • Shen, Fumin & Shen, Chunhua & Hill, Rhys & van den Hengel, Anton & Tang, Zhenmin, 2014. "Fast approximate L∞ minimization: Speeding up robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 25-37.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:25-37
    DOI: 10.1016/j.csda.2014.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000589
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.02.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu Huang & Dharmashankar Subramanian, 2012. "Iterative estimation maximization for stochastic linear programs with conditional value-at-risk constraints," Computational Management Science, Springer, vol. 9(4), pages 441-458, November.
    2. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    3. Koutecká, Pavlína & Šůcha, Přemysl & Hůla, Jan & Maenhout, Broos, 2025. "A machine learning approach to rank pricing problems in branch-and-price," European Journal of Operational Research, Elsevier, vol. 320(2), pages 328-342.
    4. Veaceslav Ghilas & Jean-François Cordeau & Emrah Demir & Tom Van Woensel, 2018. "Branch-and-Price for the Pickup and Delivery Problem with Time Windows and Scheduled Lines," Transportation Science, INFORMS, vol. 52(5), pages 1191-1210, October.
    5. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    6. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    7. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    8. Rönnberg, Elina & Larsson, Torbjörn, 2014. "All-integer column generation for set partitioning: Basic principles and extensions," European Journal of Operational Research, Elsevier, vol. 233(3), pages 529-538.
    9. Eliashberg, Jehoshua & Hegie, Quintus & Ho, Jason & Huisman, Dennis & Miller, Steven J. & Swami, Sanjeev & Weinberg, Charles B. & Wierenga, Berend, 2009. "Demand-driven scheduling of movies in a multiplex," International Journal of Research in Marketing, Elsevier, vol. 26(2), pages 75-88.
    10. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    11. Li, Jiaojiao & Zhu, Jianghan & Peng, Guansheng & Wang, Jianjiang & Zhen, Lu & Demeulemeester, Erik, 2024. "Branch-Price-and-Cut algorithms for the team orienteering problem with interval-varying profits," European Journal of Operational Research, Elsevier, vol. 319(3), pages 793-807.
    12. Markus Frey & Rainer Kolisch & Christian Artigues, 2017. "Column Generation for Outbound Baggage Handling at Airports," Transportation Science, INFORMS, vol. 51(4), pages 1226-1241, November.
    13. Arts, Joachim, 2017. "A multi-item approach to repairable stocking and expediting in a fluctuating demand environment," European Journal of Operational Research, Elsevier, vol. 256(1), pages 102-115.
    14. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    15. Stefano Gualandi & Federico Malucelli, 2012. "Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 81-100, February.
    16. Timo Hintsch & Stefan Irnich, 2018. "Exact Solution of the Soft-Clustered Vehicle Routing Problem," Working Papers 1813, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    18. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
    19. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    20. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:25-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.