IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp3-13.html
   My bibliography  Save this article

Model based clustering of customer choice data

Author

Listed:
  • Vicari, Donatella
  • Alfó, Marco

Abstract

In several empirical applications analyzing customer-by-product choice data, it may be relevant to partition individuals having similar purchase behavior in homogeneous segments. Moreover, should individual- and/or product-specific covariates be available, their potential effects on the probability to choose certain products may be also investigated. A model for joint clustering of statistical units (customers) and variables (products) is proposed in a mixture modeling framework, and an appropriate EM-type algorithm for ML parameter estimation is presented. The model can be easily linked with similar proposals appeared in various contexts, such as co-clustering of gene expression data, clustering of words and documents in web-mining data analysis.

Suggested Citation

  • Vicari, Donatella & Alfó, Marco, 2014. "Model based clustering of customer choice data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 3-13.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:3-13
    DOI: 10.1016/j.csda.2013.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003381
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vermunt, Jeroen K., 2007. "A hierarchical mixture model for clustering three-way data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5368-5376, July.
    2. Li, Jia & Zha, Hongyuan, 2006. "Two-way Poisson mixture models for simultaneous document classification and word clustering," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 163-180, January.
    3. Martella Francesca & Alfò Marco & Vichi Maurizio, 2008. "Biclustering of Gene Expression Data by an Extension of Mixtures of Factor Analyzers," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-21, February.
    4. Franses,Philip Hans & Paap,Richard, 2010. "Quantitative Models in Marketing Research," Cambridge Books, Cambridge University Press, number 9780521143653, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    2. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    3. Edwin Van Gameren & Michiel Ras & Evelien Eggink & Ingrid Ooms, 2005. "The demand for housing services in the Netherlands," ERSA conference papers ersa05p327, European Regional Science Association.
    4. Franses, Philip Hans, 2006. "Forecasting in Marketing," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 18, pages 983-1012, Elsevier.
    5. Meulders, Michel, 2013. "An R Package for Probabilistic Latent Feature Analysis of Two-Way Two-Mode Frequencies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i14).
    6. Clarijs, P. & Hogeling, B. & Franses, Ph.H.B.F. & Heij, C., 2007. "Evaluation of survey effects in pre-election polls," Econometric Institute Research Papers EI 2007-50, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Sibdari, Soheil & Pyke, David F., 2010. "A competitive dynamic pricing model when demand is interdependent over time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 330-338, November.
    8. Romina Gambacorta & Maria Iannario, 2012. "Statistical models for measuring job satisfaction," Temi di discussione (Economic working papers) 852, Bank of Italy, Economic Research and International Relations Area.
    9. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    10. Abdelfatah Ichou, 2010. "Modelling the Determinants of Job Creation: Microeconometric Models Accounting for Latent Entrepreneurial Ability," Scales Research Reports H201018, EIM Business and Policy Research.
    11. Richard Paap, 2002. "What are the advantages of MCMC based inference in latent variable models?," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(1), pages 2-22, February.
    12. Bioch, J.C. & Groenen, P.J.F. & Nalbantov, G.I., 2005. "Solving and interpreting binary classification problems in marketing with SVMs," Econometric Institute Research Papers EI 2005-46, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    14. Perez, G. Guirao & Fernandez, V. Cano & Yurda, M.I. Lopez & Donate, M.C. Rodriguez, 2002. "Socioeconomic Factors and the Consumption of Wine in Tenerife," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24798, European Association of Agricultural Economists.
    15. Lin, Kyle Y. & Sibdari, Soheil Y., 2009. "Dynamic price competition with discrete customer choices," European Journal of Operational Research, Elsevier, vol. 197(3), pages 969-980, September.
    16. Zhao, Li & Tian, Peng & Xiangyong Li, 2012. "Dynamic pricing in the presence of consumer inertia," Omega, Elsevier, vol. 40(2), pages 137-148, April.
    17. Melnykov, Volodymyr, 2013. "On the distribution of posterior probabilities in finite mixture models with application in clustering," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 175-189.
    18. Kremer, Sara T.M. & Bijmolt, Tammo H.A. & Leeflang, Peter S.H. & Wieringa, Jaap E., 2008. "Generalizations on the effectiveness of pharmaceutical promotional expenditures," International Journal of Research in Marketing, Elsevier, vol. 25(4), pages 234-246.
    19. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    20. Melnykov, Volodymyr & Melnykov, Igor, 2012. "Initializing the EM algorithm in Gaussian mixture models with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1381-1395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:3-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.