IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v70y2014icp67-87.html
   My bibliography  Save this article

Discriminant analysis of multivariate time series: Application to diagnosis based on ECG signals

Author

Listed:
  • Maharaj, Elizabeth Ann
  • Alonso, Andrés M.

Abstract

In analysing ECG data, the main aim is to differentiate between the signal patterns of healthy subjects and those of individuals with specific heart conditions. We propose an approach for classifying multivariate ECG signals based on discriminant and wavelet analyses. For this purpose we use multiple-scale wavelet variances and wavelet correlations to distinguish between the patterns of multivariate ECG signals based on the variability of the individual components of each ECG signal and on the relationships between every pair of these components. Using the results of other ECG classification studies in the literature as references, we demonstrate that our approach applied to 12-lead ECG signals from a particular database compares favourably. We also demonstrate with real and synthetic ECG data that our approach to classifying multivariate time series out-performs other well-known approaches for classifying multivariate time series.

Suggested Citation

  • Maharaj, Elizabeth Ann & Alonso, Andrés M., 2014. "Discriminant analysis of multivariate time series: Application to diagnosis based on ECG signals," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 67-87.
  • Handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:67-87
    DOI: 10.1016/j.csda.2013.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003216
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efron, Bradley, 2009. "Empirical Bayes Estimates for Large-Scale Prediction Problems," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1015-1028.
    2. Maharaj, Elizabeth Ann, 2012. "Discriminant analysis of multivariate time series using wavelets," DES - Working Papers. Statistics and Econometrics. WS ws120603, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Shumway, Robert H., 2003. "Time-frequency clustering and discriminant analysis," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 307-314, July.
    4. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    5. Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    2. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    3. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    4. Ángel López-Oriona & José A. Vilar, 2021. "F4: An All-Purpose Tool for Multivariate Time Series Classification," Mathematics, MDPI, vol. 9(23), pages 1-26, November.
    5. Leo Huang & Kuang-Yu Chang & Yu-Chen Yeh, 2020. "How Can Travel Agencies Create Sustainable Competitive Advantages? Perspective on Employee Role Stress and Initiative Behavior," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Zhao, Xin & Barber, Stuart & Taylor, Charles C. & Milan, Zoka, 2018. "Classification tree methods for panel data using wavelet-transformed time series," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 204-216.
    7. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    8. Aykroyd, Robert G. & Barber, Stuart & Miller, Luke R., 2016. "Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 351-362.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maharaj, Elizabeth Ann, 2012. "Discriminant analysis of multivariate time series using wavelets," DES - Working Papers. Statistics and Econometrics. WS ws120603, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
    3. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    4. Casado, David & López Pintado, Sara, 2008. "A functional data based method for time series classification," DES - Working Papers. Statistics and Econometrics. WS ws087427, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    6. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    7. Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
    8. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    9. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    10. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    11. Hirukawa, Junichi & Raïssi, Hamdi, 2020. "Testing linear relationships between non-constant variances of economic variables," Economic Modelling, Elsevier, vol. 90(C), pages 182-189.
    12. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    13. Li Gengxin & Hou Lin & Liu Xiaoyu & Wu Cen, 2020. "A weighted empirical Bayes risk prediction model using multiple traits," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(3), pages 1-14, June.
    14. Li Gengxin & Cui Yuehua & Zhao Hongyu, 2015. "An Empirical Bayes risk prediction model using multiple traits for sequencing data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(6), pages 551-573, December.
    15. Corduas, Marcella & Piccolo, Domenico, 2008. "Time series clustering and classification by the autoregressive metric," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1860-1872, January.
    16. Daniel M Keenan & Amy W Quinkert & Donald W Pfaff, 2015. "Stochastic Modeling of Mouse Motor Activity under Deep Brain Stimulation: The Extraction of Arousal Information," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-24, February.
    17. Ta‐Hsin Li, 2021. "Quantile‐frequency analysis and spectral measures for diagnostic checks of time series with nonlinear dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 270-290, March.
    18. Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
    19. Carolina Euán & Hernando Ombao & Joaquín Ortega, 2018. "The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 71-99, April.
    20. Zhao, Xin & Barber, Stuart & Taylor, Charles C. & Milan, Zoka, 2018. "Classification tree methods for panel data using wavelet-transformed time series," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 204-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:67-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.