IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v67y2013icp149-161.html
   My bibliography  Save this article

Robust fitting of a Weibull model with optional censoring

Author

Listed:
  • Yang, Jingjing
  • Scott, David W.

Abstract

The Weibull family is widely used to model failure data, or lifetime data, although the classical two-parameter Weibull distribution is limited to positive data and monotone failure rate. The parameters of the Weibull model are commonly obtained by maximum likelihood estimation; however, it is well-known that this estimator is not robust when dealing with contaminated data. A new robust procedure is introduced to fit a Weibull model by using L2 distance, i.e. integrated square distance, of the Weibull probability density function. The Weibull model is augmented with a weight parameter to robustly deal with contaminated data. Results comparing a maximum likelihood estimator with an L2 estimator are given in this article, based on both simulated and real data sets. It is shown that this new L2 parametric estimation method is more robust and does a better job than maximum likelihood in the newly proposed Weibull model when data are contaminated. The same preference for L2 distance criterion and the new Weibull model also happens for right-censored data with contamination.

Suggested Citation

  • Yang, Jingjing & Scott, David W., 2013. "Robust fitting of a Weibull model with optional censoring," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 149-161.
  • Handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:149-161
    DOI: 10.1016/j.csda.2013.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001825
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre‐Yves Deléamont & Elvezio Ronchetti, 2022. "Robust inference with censored survival data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1496-1533, December.
    2. Ahmed Zohair Djeddi & Ahmed Hafaifa & Abdellah Kouzou & Salam Abudura, 2017. "Exploration of reliability algorithms using modified Weibull distribution: application on gas turbine," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1885-1894, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    2. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    3. Roberts, Leigh A., 2015. "Distribution free testing of goodness of fit in a one dimensional parameter space," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 215-222.
    4. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    5. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    6. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    7. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    8. Raid Al-Aqtash & Avishek Mallick & G.G. Hamedani & Mahmoud Aldeni, 2021. "On the Gumbel-Burr XII Distribution: Regression and Application," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(6), pages 1-31, December.
    9. Jukic, Dragan & Bensic, Mirta & Scitovski, Rudolf, 2008. "On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4502-4511, May.
    10. Ahmed Z. Afify & Haitham M. Yousof & Gauss M. Cordeiro & Edwin M. M. Ortega & Zohdy M. Nofal, 2016. "The Weibull Fréchet distribution and its applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2608-2626, October.
    11. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    12. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    13. Adelchi Azzalini & Monica Chiogna, 2004. "Some results on the stress–strength model for skew-normal variates," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 315-326.
    14. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    15. Vera, J. Fernando & Di­az-Garci­a, Jose A., 2008. "A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5055-5065, August.
    16. Joarder, Avijit & Krishna, Hare & Kundu, Debasis, 2011. "Inferences on Weibull parameters with conventional type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 1-11, January.
    17. Fiaz Ahmad Bhatti & G. G. Hamedani & Mustafa Ç. Korkmaz & Munir Ahmad, 2018. "The transmuted geometric-quadratic hazard rate distribution: development, properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-23, December.
    18. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    19. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    20. Mohamed Ibrahim & Walid Emam & Yusra Tashkandy & M. Masoom Ali & Haitham M. Yousof, 2023. "Bayesian and Non-Bayesian Risk Analysis and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension," Mathematics, MDPI, vol. 11(7), pages 1-26, March.

    More about this item

    Keywords

    Weibull distribution; L2 distance; Robust estimator; Maximum likelihood; Right-censored data; Contamination;
    All these keywords.

    JEL classification:

    • L2 - Industrial Organization - - Firm Objectives, Organization, and Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:67:y:2013:i:c:p:149-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.