IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i6p1499-1510.html
   My bibliography  Save this article

A Poisson mixed model with nonnormal random effect distribution

Author

Listed:
  • Fabio, Lizandra C.
  • Paula, Gilberto A.
  • Castro, Mário de

Abstract

In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration.

Suggested Citation

  • Fabio, Lizandra C. & Paula, Gilberto A. & Castro, Mário de, 2012. "A Poisson mixed model with nonnormal random effect distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1499-1510.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1499-1510
    DOI: 10.1016/j.csda.2011.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311004233
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    2. Alonso, A. & Litière, S. & Molenberghs, G., 2008. "A family of tests to detect misspecifications in the random-effects structure of generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4474-4486, May.
    3. Ortega, Edwin M. M. & Bolfarine, Heleno & Paula, Gilberto A., 2003. "Influence diagnostics in generalized log-gamma regression models," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 165-186, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Niansheng & Wu, Ying & Chen, Dan, 2018. "Semiparametric Bayesian analysis of transformation linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 225-240.
    2. Lizandra C. Fabio & Francisco J. A. Cysneiros & Gilberto A. Paula & Jalmar M. F. Carrasco, 2022. "Hierarchical and multivariate regression models to fit correlated asymmetric positive continuous outcomes," Computational Statistics, Springer, vol. 37(3), pages 1435-1459, July.
    3. Carlos A. Cardozo & Gilberto A. Paula & Luiz H. Vanegas, 2022. "Generalized log-gamma additive partial linear models with P-spline smoothing," Statistical Papers, Springer, vol. 63(6), pages 1953-1978, December.
    4. Seo, Byungtae & Ha, Il Do, 2024. "Semiparametric accelerated failure time models under unspecified random effect distributions," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizandra C. Fabio & Francisco J. A. Cysneiros & Gilberto A. Paula & Jalmar M. F. Carrasco, 2022. "Hierarchical and multivariate regression models to fit correlated asymmetric positive continuous outcomes," Computational Statistics, Springer, vol. 37(3), pages 1435-1459, July.
    2. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    3. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine & Celso R. B. Cabral, 2017. "Linear censored regression models with scale mixtures of normal distributions," Statistical Papers, Springer, vol. 58(1), pages 247-278, March.
    5. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    6. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    7. Roger Tovar-Falón & Guillermo Martínez-Flórez & Heleno Bolfarine, 2022. "Modelling Asymmetric Data by Using the Log-Gamma-Normal Regression Model," Mathematics, MDPI, vol. 10(7), pages 1-16, April.
    8. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    9. Guillermo Martínez-Flórez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2021. "Flexible Log-Linear Birnbaum–Saunders Model," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    10. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    11. Carlos A. Dos Santos & Daniele C. T. Granzotto & Vera L. D. Tomazella & Francisco Louzada, 2018. "Hierarchical Transmuted Log-Logistic Model: A Subjective Bayesian Analysis," JRFM, MDPI, vol. 11(1), pages 1-12, March.
    12. Edwin Ortega & Fernanda Rizzato & Clarice Demétrio, 2009. "The generalized log-gamma mixture model with covariates: local influence and residual analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(3), pages 305-331, August.
    13. Carlos A. Cardozo & Gilberto A. Paula & Luiz H. Vanegas, 2022. "Generalized log-gamma additive partial linear models with P-spline smoothing," Statistical Papers, Springer, vol. 63(6), pages 1953-1978, December.
    14. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    15. Hugo Salinas & Hassan Bakouch & Najla Qarmalah & Guillermo Martínez-Flórez, 2023. "A Flexible Class of Two-Piece Normal Distribution with a Regression Illustration to Biaxial Fatigue Data," Mathematics, MDPI, vol. 11(5), pages 1-14, March.
    16. Freddy Hernández & Viviana Giampaoli, 2018. "The Impact of Misspecified Random Effect Distribution in a Weibull Regression Mixed Model," Stats, MDPI, vol. 1(1), pages 1-29, May.
    17. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    18. Michelli Barros & Manuel Galea & Manuel González & Víctor Leiva, 2010. "Influence diagnostics in the tobit censored response model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 379-397, August.
    19. Guillermo Martínez-Flórez & David Elal-Olivero & Carlos Barrera-Causil, 2021. "Extended Generalized Sinh-Normal Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, November.
    20. Kuo-Chin Lin & Yi-Ju Chen, 2016. "Goodness-of-fit tests of generalized linear mixed models for repeated ordinal responses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2053-2064, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:6:p:1499-1510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.