IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i5p1016-1027.html
   My bibliography  Save this article

Uncertainty estimation with a finite dataset in the assessment of classification models

Author

Listed:
  • Chen, Weijie
  • Yousef, Waleed A.
  • Gallas, Brandon D.
  • Hsu, Elizabeth R.
  • Lababidi, Samir
  • Tang, Rong
  • Pennello, Gene A.
  • Symmans, W. Fraser
  • Pusztai, Lajos

Abstract

To successfully translate genomic classifiers to the clinical practice, it is essential to obtain reliable and reproducible measurement of the classifier performance. A point estimate of the classifier performance has to be accompanied with a measure of its uncertainty. In general, this uncertainty arises from both the finite size of the training set and the finite size of the testing set. The training variability is a measure of classifier stability and is particularly important when the training sample size is small. Methods have been developed for estimating such variability for the performance metric AUC (area under the ROC curve) under two paradigms: a smoothed cross-validation paradigm and an independent validation paradigm. The methodology is demonstrated on three clinical microarray datasets in the microarray quality control consortium phase two project (MAQC-II): breast cancer, multiple myeloma, and neuroblastoma. The results show that the classifier performance is associated with large variability and the estimated performance may change dramatically on different datasets. Moreover, the training variability is found to be of the same order as the testing variability for the datasets and models considered. In conclusion, the feasibility of quantifying both training and testing variability of classifier performance is demonstrated on finite real-world datasets. The large variability of the performance estimates shows that patient sample size is still the bottleneck of the microarray problem and the training variability is not negligible.

Suggested Citation

  • Chen, Weijie & Yousef, Waleed A. & Gallas, Brandon D. & Hsu, Elizabeth R. & Lababidi, Samir & Tang, Rong & Pennello, Gene A. & Symmans, W. Fraser & Pusztai, Lajos, 2012. "Uncertainty estimation with a finite dataset in the assessment of classification models," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1016-1027.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1016-1027
    DOI: 10.1016/j.csda.2011.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731100209X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laura J. van 't Veer & Hongyue Dai & Marc J. van de Vijver & Yudong D. He & Augustinus A. M. Hart & Mao Mao & Hans L. Peterse & Karin van der Kooy & Matthew J. Marton & Anke T. Witteveen & George J. S, 2002. "Gene expression profiling predicts clinical outcome of breast cancer," Nature, Nature, vol. 415(6871), pages 530-536, January.
    2. Kim, Ji-Hyun, 2009. "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3735-3745, September.
    3. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    2. Abellán, Joaquín & Baker, Rebecca M. & Coolen, Frank P.A. & Crossman, Richard J. & Masegosa, Andrés R., 2014. "Classification with decision trees from a nonparametric predictive inference perspective," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 789-802.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    2. Foucher Yohann & Danger Richard, 2012. "Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-22, November.
    3. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    4. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    5. M. R. Guarracino & S. Cuciniello & P. M. Pardalos, 2009. "Classification and Characterization of Gene Expression Data with Generalized Eigenvalues," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 533-545, June.
    6. Ha, Tran Vinh & Asada, Takumi & Arimura, Mikiharu, 2019. "Determination of the influence factors on household vehicle ownership patterns in Phnom Penh using statistical and machine learning methods," Journal of Transport Geography, Elsevier, vol. 78(C), pages 70-86.
    7. Tibshirani Robert J., 2009. "Univariate Shrinkage in the Cox Model for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-20, April.
    8. Claire L Heslop & Gregory E Miller & John S Hill, 2009. "Neighbourhood Socioeconomics Status Predicts Non-Cardiovascular Mortality in Cardiac Patients with Access to Universal Health Care," PLOS ONE, Public Library of Science, vol. 4(1), pages 1-8, January.
    9. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    10. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    11. Sebastian Cremer & Lisa Pilgram & Alexander Berkowitsch & Melanie Stecher & Siegbert Rieg & Mariana Shumliakivska & Denisa Bojkova & Julian Uwe Gabriel Wagner & Galip Servet Aslan & Christoph Spinner , 2021. "Angiotensin II receptor blocker intake associates with reduced markers of inflammatory activation and decreased mortality in patients with cardiovascular comorbidities and COVID-19 disease," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-17, October.
    12. Olli Saarela & Elja Arjas, 2015. "Non-parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 609-626, June.
    13. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    14. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    15. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    16. Anton Schreuder & Colin Jacobs & Leticia Gallardo-Estrella & Mathias Prokop & Cornelia M Schaefer-Prokop & Bram van Ginneken, 2019. "Predicting all-cause and lung cancer mortality using emphysema score progression rate between baseline and follow-up chest CT images: A comparison of risk model performances," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-19, February.
    17. Stuart G. Baker & Nancy R. Cook & Andrew Vickers & Barnett S. Kramer, 2009. "Using relative utility curves to evaluate risk prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 729-748, October.
    18. Lian, Heng & Du, Pang & Li, YuanZhang & Liang, Hua, 2014. "Partially linear structure identification in generalized additive models with NP-dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 197-208.
    19. Te-Ling Ma & Tsung-Hui Hu & Chao-Hung Hung & Jing-Houng Wang & Sheng-Nan Lu & Chien-Hung Chen, 2019. "Incidence and predictors of retreatment in chronic hepatitis B patients after discontinuation of entecavir or tenofovir treatment," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
    20. Mark G E White & Neil E Bezodis & Jonathon Neville & Huw Summers & Paul Rees, 2022. "Determining jumping performance from a single body-worn accelerometer using machine learning," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:5:p:1016-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.