IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i1p114-125.html
   My bibliography  Save this article

Comparison of methods for identifying phenotype subgroups using categorical features data with application to autism spectrum disorder

Author

Listed:
  • Gebregziabher, Mulugeta
  • Shotwell, Matthew S.
  • Charles, Jane M.
  • Nicholas, Joyce S.

Abstract

We evaluate the performance of the Dirichlet process mixture (DPM) and the latent class model (LCM) in identifying autism phenotype subgroups based on categorical autism spectrum disorder (ASD) diagnostic features from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision. A simulation study is designed to mimic the diagnostic features in the ASD dataset in order to evaluate the LCM and DPM methods in this context. Likelihood based information criteria and DPM partitioning are used to identify the best fitting models. The Rand statistic is used to compare the performance of the methods in recovering simulated phenotype subgroups. Our results indicate excellent recovery of the simulated subgroup structure for both methods. The LCM performs slightly better than DPM when the correct number of latent subgroups is selected a priori. The DPM method utilizes a maximum a posteriori (MAP) criterion to estimate the number of classes, and yielded results in fair agreement with the LCM method. Comparison of model fit indices in identifying the best fitting LCM showed that adjusted Bayesian information criteria (ABIC) picks the correct number of classes over 90% of the time. Thus, when diagnostic features are categorical and there is some prior information regarding the number of latent classes, LCM in conjunction with ABIC is preferred.

Suggested Citation

  • Gebregziabher, Mulugeta & Shotwell, Matthew S. & Charles, Jane M. & Nicholas, Joyce S., 2012. "Comparison of methods for identifying phenotype subgroups using categorical features data with application to autism spectrum disorder," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 114-125, January.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:114-125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002179
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    2. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    3. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    4. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morgan, Grant B. & Hodge, Kari J. & Baggett, Aaron R., 2016. "Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 146-161.
    2. Tian, Amy Wei & Meyer, John P. & Ilic-Balas, Tatjana & Espinoza, Jose A. & Pepper, Susan, 2023. "In search of the pseudo-transformational leader: A person-centered approach," Journal of Business Research, Elsevier, vol. 158(C).
    3. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    4. Marianna Virtanen & Jussi Vahtera & Jenny Head & Rosemary Dray-Spira & Annaleena Okuloff & Adam G Tabak & Marcel Goldberg & Jenni Ervasti & Markus Jokela & Archana Singh-Manoux & Jaana Pentti & Marie , 2015. "Work Disability among Employees with Diabetes: Latent Class Analysis of Risk Factors in Three Prospective Cohort Studies," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
    5. Danks, Nicholas P. & Sharma, Pratyush N. & Sarstedt, Marko, 2020. "Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM)," Journal of Business Research, Elsevier, vol. 113(C), pages 13-24.
    6. Martin Lukac & Nadja Doerflinger & Valeria Pulignano, 2019. "Developing a Cross-National Comparative Framework for Studying Labour Market Segmentation: Measurement Equivalence with Latent Class Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(1), pages 233-255, August.
    7. Po-Hsien Huang, 2017. "Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 407-426, June.
    8. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    9. Gomes-Gonçalves, Erika & Gzyl, Henryk & Mayoral, Silvia, 2015. "Maxentropic approach to decompound aggregate risk losses," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 326-336.
    10. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    11. Schreier, Alayna & Stenersen, Madeline R. & Strambler, Michael J. & Marshall, Tim & Bracey, Jeana & Kaufman, Joy S., 2023. "Needs of caregivers of youth enrolled in a statewide system of care: A latent class analysis," Children and Youth Services Review, Elsevier, vol. 147(C).
    12. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    13. Michela Zambelli & Adriano Mauro Ellena & Semira Tagliabue & Maura Pozzi & Elena Marta, 2024. "The Role of Resilience in Fostering Late Adolescents’ Meaning-Making Process: A Latent Profile Analysis," Journal of Happiness Studies, Springer, vol. 25(7), pages 1-23, October.
    14. Lu, Zhenqiu (Laura) & Zhang, Zhiyong, 2014. "Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 220-240.
    15. Lanyan Ding & Lok-Wa Yuen & Ian M. Newman & Duane F. Shell, 2018. "University Students’ Willingness to Assist Fellow Students Who Experience Alcohol-Related Facial Flushing to Reduce Their Drinking," IJERPH, MDPI, vol. 15(5), pages 1-13, April.
    16. Wenjie Duan & Bo Qi & Junrong Sheng & Yuhang Wang, 2020. "Latent Character Strength Profile and Grouping Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(1), pages 345-359, January.
    17. Isabelle Archambault & Véronique Dupéré, 2017. "Joint trajectories of behavioral, affective, and cognitive engagement in elementary school," The Journal of Educational Research, Taylor & Francis Journals, vol. 110(2), pages 188-198, March.
    18. Roy Levy & Gregory R. Hancock, 2011. "An Extended Model Comparison Framework for Covariance and Mean Structure Models, Accommodating Multiple Groups and Latent Mixtures," Sociological Methods & Research, , vol. 40(2), pages 256-278, May.
    19. Paula Brezovec & Nina Hampl, 2021. "Electric Vehicles Ready for Breakthrough in MaaS? Consumer Adoption of E-Car Sharing and E-Scooter Sharing as a Part of Mobility-as-a-Service (MaaS)," Energies, MDPI, vol. 14(4), pages 1-25, February.
    20. Rainer W Alexandrowicz & Rebecca Jahn & Johannes Wancata, 2018. "Assessing the dimensionality of the CES-D using multi-dimensional multi-level Rasch models," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:1:p:114-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.