IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i11p3080-3090.html
   My bibliography  Save this article

On the online estimation of local constant volatilities

Author

Listed:
  • Fried, Roland

Abstract

Time varying volatilities in financial time series are commonly modeled by GARCH or by stochastic volatility models. Models with piecewise constant volatilities have been proposed recently as nonparametric alternatives. Following the latter approach, a procedure for online approximation of the current volatility is constructed by combining one-sided localized estimation of the variability with sequential testing for a change in it. A robust nonparametric framework is assumed since many financial time series show tails heavier than the Gaussian. A two-sample test for a change in variability is proposed, which works well even in case of skewed distributions.

Suggested Citation

  • Fried, Roland, 2012. "On the online estimation of local constant volatilities," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3080-3090.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3080-3090
    DOI: 10.1016/j.csda.2011.02.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311000715
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.02.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2009. "Heteroskedastic Time Series With A Unit Root," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1228-1276, October.
    2. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2007. "Testing for unit roots in time series models with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 140(2), pages 919-947, October.
    3. Fried, Roland & Gather, Ursula, 2007. "On rank tests for shift detection in time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 221-233, September.
    4. Duchesne, Pierre, 2004. "On robust testing for conditional heteroscedasticity in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 227-256, June.
    5. John Randal & Peter Thomson & Martin Lally, 2004. "Non-parametric estimation of historical volatility," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 427-440.
    6. Cătălin Stărică & Clive Granger, 2005. "Nonstationarities in Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 503-522, August.
    7. Giuseppe Cavaliere & A. M. Robert Taylor, 2008. "Time‐Transformed Unit Root Tests for Models with Non‐Stationary Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 300-330, March.
    8. repec:bla:jfinan:v:53:y:1998:i:1:p:219-265 is not listed on IDEAS
    9. Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
    10. Davies, Laurie & Höhenrieder, Christian & Krämer, Walter, 2012. "Recursive computation of piecewise constant volatilities," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3623-3631.
    11. Boudt, Kris & Croux, Christophe & Laurent, Sébastien, 2011. "Robust estimation of intraweek periodicity in volatility and jump detection," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 353-367, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Max Wornowizki & Roland Fried & Simos G. Meintanis, 2017. "Fourier methods for analyzing piecewise constant volatilities," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 289-308, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    2. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    3. Christoph Hanck & Robert Czudaj, 2015. "Nonstationary-volatility robust panel unit root tests and the great moderation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 161-187, April.
    4. Brandan K. Beare, 2008. "Unit Root Testing with Unstable Volatility," Economics Series Working Papers 2008-WO6, University of Oxford, Department of Economics.
    5. Esteve, Vicente & Prats, María A., 2023. "Testing explosive bubbles with time-varying volatility: The case of Spanish public debt," Finance Research Letters, Elsevier, vol. 51(C).
    6. repec:zbw:rwirep:0434 is not listed on IDEAS
    7. Brendan K. Beare, 2018. "Unit Root Testing with Unstable Volatility," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 816-835, November.
    8. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert & Taylor, A.M. Robert, 2016. "Tests for explosive financial bubbles in the presence of non-stationary volatility," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 548-574.
    9. Anton Skrobotov, 2022. "Testing for explosive bubbles: a review," Papers 2207.08249, arXiv.org.
    10. Christoph Hanck & Robert Czudaj, 2013. "Nonstationary-Volatility Robust Panel Unit Root Tests and the Great Moderation," Ruhr Economic Papers 0434, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    11. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    12. Skrobotov Anton, 2023. "Testing for explosive bubbles: a review," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-26, January.
    13. Smeekes, Stephan & Taylor, A.M. Robert, 2012. "Bootstrap Union Tests For Unit Roots In The Presence Of Nonstationary Volatility," Econometric Theory, Cambridge University Press, vol. 28(2), pages 422-456, April.
    14. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    15. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    16. Andria C. Evripidou & David I. Harvey & Stephen J. Leybourne & Robert Sollis, 2022. "Testing for Co‐explosive Behaviour in Financial Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(3), pages 624-650, June.
    17. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    18. Wang, Shaoping & Li, Yanglin & Wen, Kuangyu, 2021. "Recursive adjusted unit root tests under non-stationary volatility," Economics Letters, Elsevier, vol. 205(C).
    19. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model," Papers 1907.04147, arXiv.org, revised Oct 2020.
    20. Giuseppe Cavaliere & Peter C. B. Phillips & Stephan Smeekes & A. M. Robert Taylor, 2015. "Lag Length Selection for Unit Root Tests in the Presence of Nonstationary Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 512-536, April.
    21. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:11:p:3080-3090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.