IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i4p1521-1529.html
   My bibliography  Save this article

Fast computation of high-dimensional multivariate normal probabilities

Author

Listed:
  • Phinikettos, Ioannis
  • Gandy, Axel

Abstract

A new efficient method is proposed to compute multivariate normal probabilities over rectangles in high dimensions. The method exploits four variance reduction techniques: conditional Monte Carlo, importance sampling, splitting and control variates. Simulation results are presented that evaluate the performance of the new proposed method. The new method is designed for computing small exceedance probabilities.

Suggested Citation

  • Phinikettos, Ioannis & Gandy, Axel, 2011. "Fast computation of high-dimensional multivariate normal probabilities," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1521-1529, April.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1521-1529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00379-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tamás Szántai, 2000. "Improved Bounds and Simulation Procedures on the Value of the Multivariate Normal Probability Distribution Function," Annals of Operations Research, Springer, vol. 100(1), pages 85-101, December.
    2. Mark J. Schervish, 1984. "Multivariate Normal Probabilities with Error Bound," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 81-94, March.
    3. Wang, Morgan & Kennedy, W. J., 1992. "A numerical method for accurately approximating multivariate normal probabilities," Computational Statistics & Data Analysis, Elsevier, vol. 13(2), pages 197-210, March.
    4. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
    5. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    6. Vijverberg, Wim P. M., 1997. "Monte Carlo evaluation of multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 281-307.
    7. Tetsuhisa Miwa & A. J. Hayter & Satoshi Kuriki, 2003. "The evaluation of general non‐centred orthant probabilities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 223-234, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Zhu & R. Pace, 2014. "Modeling Spatially Interdependent Mortgage Decisions," The Journal of Real Estate Finance and Economics, Springer, vol. 49(4), pages 598-620, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jietao Xie & Juan Wu, 2020. "Recursive Calculation Model for a Special Multivariate Normal Probability of First-Order Stationary Sequence," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 164-171, January.
    2. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
    3. Jacques Huguenin & Florian Pelgrin & Alberto Holly, 2009. "Estimation of multivariate probit models by exact maximum likelihood," Working Papers 0902, University of Lausanne, Institute of Health Economics and Management (IEMS).
    4. Andreas Ziegler, 2007. "Simulated classical tests in multinomial probit models," Statistical Papers, Springer, vol. 48(4), pages 655-681, October.
    5. A. Hayter & Y. Lin, 2012. "The evaluation of two-sided orthant probabilities for a quadrivariate normal distribution," Computational Statistics, Springer, vol. 27(3), pages 459-471, September.
    6. Erik Plug & Wim Vijverberg, 2003. "Schooling, Family Background, and Adoption: Is It Nature or Is It Nurture?," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 611-641, June.
    7. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    8. Ziegler, Andreas, 2002. "Simulated Classical Tests in the Multiperiod Multinomial Probit Model," ZEW Discussion Papers 02-38, ZEW - Leibniz Centre for European Economic Research.
    9. Ali Baharev & Hermann Schichl & Endre Rév, 2017. "Computing the noncentral-F distribution and the power of the F-test with guaranteed accuracy," Computational Statistics, Springer, vol. 32(2), pages 763-779, June.
    10. Tsantas, N., 1995. "Stochastic analysis of a non-homogeneous Markov system," European Journal of Operational Research, Elsevier, vol. 85(3), pages 670-685, September.
    11. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    12. Maruyama, Shiko, 2014. "Estimation of finite sequential games," Journal of Econometrics, Elsevier, vol. 178(2), pages 716-726.
    13. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
    15. Lorenzo Cappellari & Stephen P. Jenkins, 2006. "Calculation of multivariate normal probabilities by simulation, with applications to maximum simulated likelihood estimation," Stata Journal, StataCorp LP, vol. 6(2), pages 156-189, June.
    16. Melo, Tatiane F.N. & Vasconcellos, Klaus L.P. & Lemonte, Artur J., 2009. "Some restriction tests in a new class of regression models for proportions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3972-3979, October.
    17. Madar, Vered, 2015. "Direct formulation to Cholesky decomposition of a general nonsingular correlation matrix," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 142-147.
    18. Garnier, Josselin & Omrane, Abdennebi & Rouchdy, Youssef, 2009. "Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 848-858, November.
    19. Ziegler, Andreas, 2001. "Simulated z-tests in multinomial probit models," ZEW Discussion Papers 01-53, ZEW - Leibniz Centre for European Economic Research.
    20. E. Andres Houseman & Brent Coull & Louise Ryan, 2004. "A Functional-Based Distribution Diagnostic for a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1018, Berkeley Electronic Press.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:4:p:1521-1529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.