IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p789-801.html
   My bibliography  Save this article

Supervised multidimensional scaling for visualization, classification, and bipartite ranking

Author

Listed:
  • Witten, Daniela M.
  • Tibshirani, Robert

Abstract

Least squares multidimensional scaling (MDS) is a classical method for representing a nxn dissimilarity matrix . One seeks a set of configuration points such that is well approximated by the Euclidean distances between the configuration points: . Suppose that in addition to , a vector of associated binary class labels corresponding to the n observations is available. We propose an extension to MDS that incorporates this outcome vector. Our proposal, supervised multidimensional scaling (SMDS), seeks a set of configuration points such that , and such that zis>zjs for s=1,...,S tends to occur when yi>yj. This results in a new way to visualize the observations. In addition, we show that SMDS leads to a method for the classification of test observations, which can also be interpreted as a solution to the bipartite ranking problem. This method is explored in a simulation study, as well as on a prostate cancer gene expression data set and on a handwritten digits data set.

Suggested Citation

  • Witten, Daniela M. & Tibshirani, Robert, 2011. "Supervised multidimensional scaling for visualization, classification, and bipartite ranking," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 789-801, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:789-801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00273-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    2. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    3. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungkyu Jung & Xingye Qiao, 2014. "A statistical approach to set classification by feature selection with applications to classification of histopathology images," Biometrics, The International Biometric Society, vol. 70(3), pages 536-545, September.
    2. Yichen Cheng & Xinlei Wang & Yusen Xia, 2021. "Supervised t -Distributed Stochastic Neighbor Embedding for Data Visualization and Classification," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 566-585, May.
    3. Antonis A. Michis, 2021. "Wavelet Multidimensional Scaling Analysis of European Economic Sentiment Indicators," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 443-480, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    3. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    4. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    5. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    6. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    7. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    8. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    9. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    10. J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.
    11. Massimiliano Agovino & Maria Ferrara & Antonio Garofalo, 2017. "The driving factors of separate waste collection in Italy: a multidimensional analysis at provincial level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2297-2316, December.
    12. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    13. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
    14. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    15. Raffaella Piccarreta, 2012. "Graphical and Smoothing Techniques for Sequence Analysis," Sociological Methods & Research, , vol. 41(2), pages 362-380, May.
    16. Xiaomeng Cao & Yuan Gao & Jingwei Cui & Shuangbiao Han & Lei Kang & Sha Song & Chengshan Wang, 2020. "Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China," Energies, MDPI, vol. 13(8), pages 1-25, April.
    17. Pepermans, Roland & Verleye, Gino, 1998. "A unified Europe? How euro-attitudes relate to psychological differences between countries," Journal of Economic Psychology, Elsevier, vol. 19(6), pages 681-699, December.
    18. Hossein Safizadeh, M. & McKenna, David R., 1996. "Application of multidimensional scaling techniques to facilities layout," European Journal of Operational Research, Elsevier, vol. 92(1), pages 54-62, July.
    19. He, Jiayi & Shang, Pengjian & Xiong, Hui, 2018. "Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 210-221.
    20. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:789-801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.