IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p567-577.html
   My bibliography  Save this article

Feature selection in the Laplacian support vector machine

Author

Listed:
  • Lee, Sangjun
  • Park, Changyi
  • Koo, Ja-Yong

Abstract

Traditional classifiers including support vector machines use only labeled data in training. However, labeled instances are often difficult, costly, or time consuming to obtain while unlabeled instances are relatively easy to collect. The goal of semi-supervised learning is to improve the classification accuracy by using unlabeled data together with a few labeled data in training classifiers. Recently, the Laplacian support vector machine has been proposed as an extension of the support vector machine to semi-supervised learning. The Laplacian support vector machine has drawbacks in its interpretability as the support vector machine has. Also it performs poorly when there are many non-informative features in the training data because the final classifier is expressed as a linear combination of informative as well as non-informative features. We introduce a variant of the Laplacian support vector machine that is capable of feature selection based on functional analysis of variance decomposition. Through synthetic and benchmark data analysis, we illustrate that our method can be a useful tool in semi-supervised learning.

Suggested Citation

  • Lee, Sangjun & Park, Changyi & Koo, Ja-Yong, 2011. "Feature selection in the Laplacian support vector machine," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 567-577, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:567-577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00237-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoonkyung Lee & Yuwon Kim & Sangjun Lee & Ja-Yong Koo, 2006. "Structured multicategory support vector machines with analysis of variance decomposition," Biometrika, Biometrika Trust, vol. 93(3), pages 555-571, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    2. Park, Beomjin & Park, Changyi, 2021. "Kernel variable selection for multicategory support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    3. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    4. Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    5. Sohn, Insuk & Shim, Jooyong & Hwang, Changha & Kim, Sujong & Lee, Jae Won, 2009. "Informative transcription factor selection using support vector machine-based generalized approximate cross validation criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1727-1735, March.
    6. Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
    7. Park, Changyi & Koo, Ja-Yong & Kim, Peter T. & Lee, Jae Won, 2008. "Stepwise feature selection using generalized logistic loss," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3709-3718, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:567-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.