IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p429-445.html
   My bibliography  Save this article

Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data

Author

Listed:
  • Lambert, Philippe

Abstract

Penalized B-splines combined with the composite link model are used to estimate a bivariate density from a histogram with wide bins. The goals are multiple: they include the visualization of the dependence between the two variates, but also the estimation of derived quantities like Kendall's tau, conditional moments and quantiles. Two strategies are proposed: the first one is semiparametric with flexible margins modeled using B-splines and a parametric copula for the dependence structure; the second one is nonparametric and is based on Kronecker products of the marginal B-spline bases. Frequentist and Bayesian estimations are described. A large simulation study quantifies the performances of the two methods under different dependence structures and for varying strengths of dependence, sample sizes and amounts of grouping. It suggests that Schwarz's BIC is a good tool for classifying the competing models. The density estimates are used to evaluate conditional quantiles in two applications in social and in medical sciences.

Suggested Citation

  • Lambert, Philippe, 2011. "Smooth semiparametric and nonparametric Bayesian estimation of bivariate densities from bivariate histogram data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 429-445, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:429-445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00212-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Thompson & R. J. Baker, 1981. "Composite Link Functions in Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(2), pages 125-131, June.
    2. Koo, Ja-Yong & Kooperberg, Charles, 2000. "Logspline density estimation for binned data," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 133-147, January.
    3. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    4. Lambert, Philippe & Eilers, Paul H.C., 2009. "Bayesian density estimation from grouped continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1388-1399, February.
    5. Hanson, Timothy E., 2006. "Inference for Mixtures of Finite Polya Tree Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1548-1565, December.
    6. Tommi Harkanen & Jorma I. Virtanen & Elja Arjas, 2000. "Caries on Permanent Teeth: A Non‐parametric Bayesian Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 577-588, December.
    7. William B. Goggins & Dianne M. Finkelstein, 2000. "A Proportional Hazards Model for Multivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 56(3), pages 940-943, September.
    8. Guadalupe Gómez & M. Calle & Ramon Oller, 2004. "Frequentist and Bayesian approaches for interval-censored data," Statistical Papers, Springer, vol. 45(2), pages 139-173, April.
    9. Yang, Mingan & Hanson, Timothy & Christensen, Ronald, 2008. "Nonparametric Bayesian estimation of a bivariate density with interval censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5202-5214, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Lambert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 284-286, August.
    2. Lambert, Philippe, 2021. "Fast Bayesian inference using Laplace approximations in nonparametric double additive location-scale models with right- and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Lambert, Philippe & Eilers, Paul H.C., 2009. "Bayesian density estimation from grouped continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1388-1399, February.
    3. Papkov, Galen I. & Scott, David W., 2010. "Local-moment nonparametric density estimation of pre-binned data," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3421-3429, December.
    4. Lambert, Philippe, 2023. "Nonparametric density estimation and risk quantification from tabulated sample moments," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 177-189.
    5. Lambert, Philippe & Gressani, Oswaldo, 2022. "Penalty parameter selection and asymmetry corrections to Laplace approximations in Bayesian P-splines models," LIDAM Discussion Papers ISBA 2022030, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Philippe Lambert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 284-286, August.
    7. Adam Branscum & Timothy Hanson & Ian Gardner, 2008. "Bayesian non-parametric models for regional prevalence estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 567-582.
    8. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    9. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    10. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    12. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    13. Pantazis, Nikos & Kenward, Michael G. & Touloumi, Giota, 2013. "Performance of parametric survival models under non-random interval censoring: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 16-30.
    14. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    15. Ayma Anza, Diego Armando & Durbán, María & Lee, Dae-Jin & Van de Kassteele, Jan, 2016. "Modelling latent trends from spatio-temporally grouped data using composite link mixed models," DES - Working Papers. Statistics and Econometrics. WS 23448, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Shinya Sugawara, 2017. "Firm‐Driven Management of Longevity Risk: Analysis of Lump‐Sum Forward Payments in Japanese Nursing Homes," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 26(1), pages 169-204, February.
    17. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    18. Federico Palacios-González & Rosa M. García-Fernández, 2020. "A faster algorithm to estimate multiresolution densities," Computational Statistics, Springer, vol. 35(3), pages 1207-1230, September.
    19. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    20. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:429-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.