IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i12p3320-3332.html
   My bibliography  Save this article

A Bayesian analysis of an agricultural field trial with three spatial dimensions

Author

Listed:
  • Donald, Margaret
  • Alston, Clair L.
  • Young, Rick R.
  • Mengersen, Kerrie L.

Abstract

Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the 'layered CAR model', while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lies in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate conditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.

Suggested Citation

  • Donald, Margaret & Alston, Clair L. & Young, Rick R. & Mengersen, Kerrie L., 2011. "A Bayesian analysis of an agricultural field trial with three spatial dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3320-3332, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3320-3332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002398
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Min & Wang, Xinlei, 2011. "Approximate predictive densities and their applications in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1570-1580, April.
    2. Brian R. Cullis & Warwick J. Lill & John A. Fisher & Barbara J. Read & Alan C. Gleeson, 1989. "A New Procedure for the Analysis of Early Generation Variety Trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(2), pages 361-375, June.
    3. Marley, Jennifer K. & Wand, Matthew P., 2010. "Non-Standard Semiparametric Regression via BRugs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 37(i05).
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Ngo, Long & Wand, Matthew P., 2004. "Smoothing with Mixed Model Software," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i01).
    6. J. Besag & D. Higdon, 1999. "Bayesian analysis of agricultural field experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 691-746.
    7. Julian Besag & Debashis Mondal, 2005. "First-order intrinsic autoregressions and the de Wijs process," Biometrika, Biometrika Trust, vol. 92(4), pages 909-920, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariana Rodrigues-Motta & Johannes Forkman, 2022. "Bayesian Analysis of Nonnegative Data Using Dependency-Extended Two-Part Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 201-221, June.
    2. Margaret R Donald & Kerrie L Mengersen & Rick R Young, 2015. "A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woojoo Lee & Hans‐Peter Piepho & Youngjo Lee, 2021. "Resolving the ambiguity of random‐effects models with singular precision matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 482-499, November.
    2. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    3. Osafu Augustine Egbon & Omodolapo Somo-Aina & Ezra Gayawan, 2021. "Spatial Weighted Analysis of Malnutrition Among Children in Nigeria: A Bayesian Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 495-523, December.
    4. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    5. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    6. Margaret R Donald & Kerrie L Mengersen & Rick R Young, 2015. "A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    7. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    8. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    9. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    10. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    11. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    12. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    13. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    14. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    15. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    16. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    17. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    18. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    19. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    20. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3320-3332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.