IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i8p1962-1974.html
   My bibliography  Save this article

Bayesian analysis for outliers in survey sampling

Author

Listed:
  • Unnikrishnan, N.K.

Abstract

The present paper develops an outlier model suitable for problems wherein identification of outliers is essential and, applied areas of statistics are abound with such examples. One of the peculiarities of outliers in survey sampling is that there could be observed as well as unobserved outliers; the paper assumes that there are no unobserved outliers. We use a generalized linear model (GLM) with higher variances for the outlying units. Count data are treated through overdispersed GLM of Gelfand and Dalal (1990). Error components of the link function are assumed to have scale mixtures of normal distributions. The framework covers both standard survey sampling and small area estimation problems. The number as well as the set of outliers are assumed to be unknown. Posterior joint distribution is found using the reversible jump Markov chain and Metropolis-Hastings algorithm. We also use properties of the deviance function of GLM (West, 1985) for posterior computations. The basic framework is extended to various models appropriate in survey sampling such as double sampling and conditional autoregressive models. The method is illustrated using leukaemia patients data of Cox and Snell (1981), Scottish lip cancer data, Missouri lung cancer data and Baltimore census data.

Suggested Citation

  • Unnikrishnan, N.K., 2010. "Bayesian analysis for outliers in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1962-1974, August.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1962-1974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00086-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Datta, G. S. & Lahiri, P., 1995. "Robust Hierarchical Bayes Estimation of Small Area Characteristics in the Presence of Covariates and Outliers," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 310-328, August.
    3. Tsionas, Efthymios G., 1998. "Monte Carlo inference in econometric models with symmetric stable disturbances," Journal of Econometrics, Elsevier, vol. 88(2), pages 365-401, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ausloos, Marcel & Cerqueti, Roy & Bartolacci, Francesca & Castellano, Nicola G., 2018. "SME investment best strategies. Outliers for assessing how to optimize performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 754-765.
    2. Chaouch, Mohamed & Goga, Camelia, 2010. "Design-based estimation for geometric quantiles with application to outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2214-2229, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    4. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    5. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    6. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    7. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    8. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    9. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    10. Lombardi, Marco J., 2007. "Bayesian inference for [alpha]-stable distributions: A random walk MCMC approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2688-2700, February.
    11. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    12. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    13. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    14. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    15. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    16. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    17. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    18. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    19. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    20. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1962-1974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.