IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v54y1995i2p310-328.html
   My bibliography  Save this article

Robust Hierarchical Bayes Estimation of Small Area Characteristics in the Presence of Covariates and Outliers

Author

Listed:
  • Datta, G. S.
  • Lahiri, P.

Abstract

A robust hierarchical Bayes method is developed to smooth small area means when a number of covariates are available. The method is particularly suited when one or more outliers are present in the data. It is well known that the regular Bayes estimators of small. area means, under normal prior distribution, perform poorly in presence of even one extreme observation. In this case the Bayes estimators collapse to the direct survey estimators. This paper introduces a general theory for robust hierarchical Bayes estimation procedure using a fairly rich class of scale mixtures of normal prior distributions. To retain maximum benefit from combining information from related sources, we suggest to use Cauchy prior distribution for the outlying areas and an appropriate scale mixture of normal prior whose tail is lighter than the Cauchy prior for the rest of the areas. It is shown that, unlike the hierarchical Bayes estimator under a normal prior, our estimator has more protection against outlying observations.

Suggested Citation

  • Datta, G. S. & Lahiri, P., 1995. "Robust Hierarchical Bayes Estimation of Small Area Characteristics in the Presence of Covariates and Outliers," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 310-328, August.
  • Handle: RePEc:eee:jmvana:v:54:y:1995:i:2:p:310-328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(85)71059-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    2. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    3. Harm Jan Boonstra & Jan van den Brakel & Sumonkanti Das, 2021. "Multilevel time series modelling of mobility trends in the Netherlands for small domains," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 985-1007, July.
    4. Unnikrishnan, N.K., 2010. "Bayesian analysis for outliers in survey sampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1962-1974, August.
    5. Adrijo Chakraborty & Gauri Sankar Datta & Abhyuday Mandal, 2016. "A Two-Component Normal Mixture Alternative To The Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    6. Fernando A. S. Moura & André Felipe Neves & Denise Britz do N. Silva, 2017. "Small area models for skewed Brazilian business survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1039-1055, October.
    7. Charlotte Articus & Jan Pablo Burgard, 2014. "A Finite Mixture Fay Herriot-type model for estimating regional rental prices in Germany," Research Papers in Economics 2014-14, University of Trier, Department of Economics.
    8. Tzavidis, Nikos & Zhang, Li-Chun & Luna Hernandez, Angela & Schmid, Timo & Rojas-Perilla, Natalia, 2016. "From start to finish: A framework for the production of small area official statistics," Discussion Papers 2016/13, Free University Berlin, School of Business & Economics.
    9. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:54:y:1995:i:2:p:310-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.