IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i6p2354-2362.html
   My bibliography  Save this article

Online analysis of time series by the Qn estimator

Author

Listed:
  • Nunkesser, Robin
  • Fried, Roland
  • Schettlinger, Karen
  • Gather, Ursula

Abstract

A fast update algorithm for online calculation of the Qn scale estimator is presented. This algorithm allows robust analysis of high-frequency time series in real time. It provides reliable estimates of a time-varying volatility even if many large outliers are present and it offers good efficiency in the case of clean Gaussian data.

Suggested Citation

  • Nunkesser, Robin & Fried, Roland & Schettlinger, Karen & Gather, Ursula, 2009. "Online analysis of time series by the Qn estimator," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2354-2362, April.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2354-2362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00148-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Gelper, Sarah & Schettlinger, Karen & Croux, Christophe & Gather, Ursula, 2007. "Robust online scale estimation in time series : regression-free approach," Technical Reports 2007,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Yanyuan Ma & Marc G. Genton, 2000. "Highly Robust Estimation of the Autocovariance Function," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(6), pages 663-684, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Croux, Christophe & Gelper, Sarah & Mahieu, Koen, 2010. "Robust exponential smoothing of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2999-3006, December.
    2. Caliskan, Derya & Croux, Christophe & Gelper, Sarah, 2009. "Efficient and robust scale estimation for trended time series," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1900-1905, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Driton Kuçi, 2015. "Contemporary Models of Organization of Power and the Macedonian Model of Organization of Power," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, September.
    2. Andrey Shternshis & Piero Mazzarisi & Stefano Marmi, 2022. "Efficiency of the Moscow Stock Exchange before 2022," Papers 2207.10476, arXiv.org, revised Jul 2022.
    3. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    4. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    5. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    6. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    7. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    8. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    10. G.M. Gallo & D. Lacava & E. Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Working Paper CRENoS 202306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    11. Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
    12. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    13. Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017. "Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
    14. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2017. "Copula–Based vMEM Specifications versus Alternatives: The Case of Trading Activity," Econometrics, MDPI, vol. 5(2), pages 1-24, April.
    15. Martin, Vance L. & Tang, Chrismin & Yao, Wenying, 2021. "Forecasting the volatility of asset returns: The informational gains from option prices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 862-880.
    16. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    17. Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
    18. Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
    19. Li, Xingyi & Zakamulin, Valeriy, 2020. "The term structure of volatility predictability," International Journal of Forecasting, Elsevier, vol. 36(2), pages 723-737.
    20. Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:6:p:2354-2362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.