IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i5p1604-1612.html
   My bibliography  Save this article

Assumption adequacy averaging as a concept for developing more robust methods for differential gene expression analysis

Author

Listed:
  • Pounds, Stan
  • Rai, Shesh N.

Abstract

The concept of assumption adequacy averaging is introduced as a technique for developing more robust methods that incorporate assessments of assumption adequacy into the analysis. The concept is illustrated by using it to develop a method that averages results from the t-test and nonparametric rank-sum test with weights obtained from using the Shapiro-Wilk test to test the assumption of normality. Through this averaging process, the proposed method is able to rely more heavily on the statistical test that the data suggests is superior for each individual gene. Subsequently, this method developed by assumption adequacy averaging outperforms its two component methods (the t-test and rank-sum test) in a series of traditional and bootstrap-based simulation studies. The proposed method showed greater concordance in gene selection across two studies of gene expression in acute myeloid leukemia than did the t-test or rank-sum test. An R routine for implementing the method is available from www.stjuderesearch.org/depts/biostats.

Suggested Citation

  • Pounds, Stan & Rai, Shesh N., 2009. "Assumption adequacy averaging as a concept for developing more robust methods for differential gene expression analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1604-1612, March.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1604-1612
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00275-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allison, David B. & Gadbury, Gary L. & Heo, Moonseong & Fernandez, Jose R. & Lee, Cheol-Koo & Prolla, Tomas A. & Weindruch, Richard, 2002. "A mixture model approach for the analysis of microarray gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 1-20, March.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    2. Demba Fofana & E. O. George & Dale Bowman, 2021. "Combining assumptions and graphical network into gene expression data analysis," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-17, December.
    3. Park, DoHwan & Park, Junyong & Zhong, Xiaosong & Sadelain, Michel, 2011. "Estimation of empirical null using a mixture of normals and its use in local false discovery rate," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2421-2432, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    2. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    3. Muir, W.M. & Rosa, G.J.M. & Pittendrigh, B.R. & Xu, Z. & Rider, S.D. & Fountain, M. & Ogas, J., 2009. "A mixture model approach for the analysis of small exploratory microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1566-1576, March.
    4. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    5. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    6. Bickel David R., 2008. "Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-27, March.
    7. E. M. Conlon & B. L. Postier & B. A. Methe & K. P. Nevin & D. R. Lovley, 2009. "Hierarchical Bayesian meta-analysis models for cross-platform microarray studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1067-1085.
    8. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
    9. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    10. Andrew Y. Chen, 2022. "Do t-Statistic Hurdles Need to be Raised?," Papers 2204.10275, arXiv.org, revised Apr 2024.
    11. David I. Ohlssen & Linda D. Sharples & David J. Spiegelhalter, 2007. "A hierarchical modelling framework for identifying unusual performance in health care providers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 865-890, October.
    12. Bradley Efron, 2007. "Doing thousands of hypothesis tests at the same time," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 3-21.
    13. Robin, Stephane & Bar-Hen, Avner & Daudin, Jean-Jacques & Pierre, Laurent, 2007. "A semi-parametric approach for mixture models: Application to local false discovery rate estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5483-5493, August.
    14. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
    15. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    16. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    17. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    18. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    19. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    20. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1604-1612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.