IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1249-1263.html
   My bibliography  Save this article

On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions

Author

Listed:
  • Osorio, Felipe
  • Paula, Gilberto A.
  • Galea, Manuel

Abstract

The Grubbs' measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes. In order to identify outliers and to criticize the model building we use the local influence procedure in a study to compare the precision of several thermocouples.

Suggested Citation

  • Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2009. "On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1249-1263, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1249-1263
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00505-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    2. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    3. Lee, Sik-Yum & Xu, Liang, 2004. "Influence analyses of nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 321-341, March.
    4. W.‐Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    5. G. J. M. Rosa & D. Gianola & C. R. Padovani, 2004. "Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 855-873.
    6. Víctor Lachos & Filidor Vilca & Manuel Galea, 2007. "Influence diagnostics for the Grubbs's model," Statistical Papers, Springer, vol. 48(3), pages 419-436, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
    2. Riquelme, Marco & Bolfarine, Heleno & Galea, Manuel, 2015. "Robust linear functional mixed models," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 82-98.
    3. Camila Zeller & Rignaldo Carvalho & Victor Lachos, 2012. "On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 53(3), pages 665-683, August.
    4. Cao, Chun-Zheng & Lin, Jin-Guan & Zhu, Xiao-Xin, 2012. "On estimation of a heteroscedastic measurement error model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 438-448.
    5. Jin-Guan Lin & Chun-Zheng Cao, 2013. "On estimation of measurement error models with replication under heavy-tailed distributions," Computational Statistics, Springer, vol. 28(2), pages 809-829, April.
    6. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    7. Chunzheng Cao & Mengqian Chen & Yahui Wang & Jian Qing Shi, 2018. "Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions," Computational Statistics, Springer, vol. 33(1), pages 319-338, March.
    8. R. S. Fagundes & M. A. Uribe-Opazo & M. Galea & L. P. C. Guedes, 2018. "Spatial Variability in Slash Linear Modeling with Finite Second Moment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 276-296, June.
    9. Chunzheng Cao & Yahui Wang & Jian Qing Shi & Jinguan Lin, 2018. "Measurement Error Models for Replicated Data Under Asymmetric Heavy-Tailed Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 531-553, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matos, Larissa A. & Lachos, Victor H. & Balakrishnan, N. & Labra, Filidor V., 2013. "Influence diagnostics in linear and nonlinear mixed-effects models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 450-464.
    2. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    3. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    4. Patricia Giménez & María Patat, 2014. "Local influence for functional comparative calibration models with replicated data," Statistical Papers, Springer, vol. 55(2), pages 431-454, May.
    5. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.
    6. Lee, Sik-Yum & Lu, Bin & Song, Xin-Yuan, 2006. "Assessing local influence for nonlinear structural equation models with ignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1356-1377, March.
    7. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    8. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    9. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    10. Camila Zeller & Victor Lachos & Filidor Labra, 2014. "Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 55(3), pages 671-690, August.
    11. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    12. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    13. Giménez, Patricia & Galea, Manuel, 2013. "Influence measures on corrected score estimators in functional heteroscedastic measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 1-15.
    14. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    15. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    16. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    17. Xiaowen Dai & Libin Jin & Lei Shi & Cuiping Yang & Shuangzhe Liu, 2016. "Local influence analysis in general spatial models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 313-331, July.
    18. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    19. R.A.B. Assumpção & M.A. Uribe-Opazo & M. Galea, 2014. "Analysis of local influence in geostatistics using Student's t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2323-2341, November.
    20. Clécio da Silva Ferreira & Gilberto A. Paula & Gustavo C. Lana, 2022. "Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors," Computational Statistics, Springer, vol. 37(1), pages 445-468, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1249-1263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.