IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i12p4243-4254.html
   My bibliography  Save this article

L2E estimation of mixture complexity for count data

Author

Listed:
  • Umashanger, T.
  • Sriram, T.N.

Abstract

For count data, robust estimation of the number of mixture components in finite mixtures is revisited using L2 distance. An information criterion based on L2 distance is shown to yield an estimator, which is also shown to be strongly consistent. Monte Carlo simulations show that our estimator is competitive with other procedures in correctly determining the number of components when the data comes from Poisson mixtures. When the data comes from a negative binomial mixture but the postulated model is a Poisson mixture, simulations show that our estimator is highly competitive with the minimum Hellinger distance (MHD) estimator in terms of robustness against model misspecification. Furthermore, we illustrate the performance of our estimator for a real dataset with overdispersion and zero-inflation. Computational simplicity combined with robustness property makes the L2E approach an attractive alternative to other procedures in the literature.

Suggested Citation

  • Umashanger, T. & Sriram, T.N., 2009. "L2E estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4243-4254, October.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4243-4254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00202-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    2. Ishwaran H. & James L.F. & Sun J., 2001. "Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1316-1332, December.
    3. Woo, Mi-Ja & Sriram, T.N., 2006. "Robust Estimation of Mixture Complexity," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1475-1486, December.
    4. Dionne, Georges & Artis, Manuel & Guillen, Montserrat, 1996. "Count data models for a credit scoring system," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 303-325, September.
    5. Dimitris Karlis & Evdokia Xekalaki, 1999. "On Testing for the Number of Components in a Mixed Poisson Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 149-162, March.
    6. Karlis, Dimitris & Xekalaki, Evdokia, 1998. "Minimum Hellinger distance estimation for Poisson mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 81-103, November.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    9. Chen, Jiahua & Khalili, Abbas, 2008. "Order Selection in Finite Mixture Models With a Nonsmooth Penalty," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1674-1683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    2. Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2021. "Bayes estimates of multimodal density features using DNA and Economic Data," Tinbergen Institute Discussion Papers 21-017/III, Tinbergen Institute.
    3. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
    2. Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
    3. Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
    4. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    5. Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
    6. Martin, Ryan, 2012. "Convergence rate for predictive recursion estimation of finite mixtures," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 378-384.
    7. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    8. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    9. Madison Terrell & Qazi Haque & Jamie L. Cross & Firmin Doko Tchatoka, 2023. "Monetary policy shocks and exchange rate dynamics in small open economies," School of Economics and Public Policy Working Papers 2023-04 Classification-C3, University of Adelaide, School of Economics and Public Policy.
    10. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    11. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    12. Wu, Jingjing & Karunamuni, Rohana & Zhang, Biao, 2010. "Minimum Hellinger distance estimation in a two-sample semiparametric model," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1102-1122, May.
    13. Jamie Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Dijk, 2023. "Bayesian Mode Inference for Discrete Distributions in Economics and Finance," Tinbergen Institute Discussion Papers 23-038/III, Tinbergen Institute.
    14. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    15. Aßmann, Christian & Boysen-Hogrefe, Jens, 2009. "A bayesian approach to model-based clustering for panel probit models," Economics Working Papers 2009-03, Christian-Albrechts-University of Kiel, Department of Economics.
    16. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    17. Jamie L. Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Dijk, 2024. "Flexible Negative Binomial Mixtures for Credible Mode Inference in Heterogeneous Count Data from Finance, Economics and Bioinformatics," Tinbergen Institute Discussion Papers 24-056/III, Tinbergen Institute.
    18. Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
    19. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.
    20. Zongwu Cai & Xian Wang, 2014. "Selection of Mixed Copula Model via Penalized Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 788-801, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:12:p:4243-4254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.