Minimum Hellinger distance estimation for Poisson mixtures
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- B. Clarke & C. Heathcote, 1994. "Robust estimation ofk-component univariate normal mixtures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(1), pages 83-93, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wooi Chen Khoo & Seng Huat Ong & Atanu Biswas, 2017. "Modeling time series of counts with a new class of INAR(1) model," Statistical Papers, Springer, vol. 58(2), pages 393-416, June.
- Wang, Yong, 2007. "Minimum disparity computation via the iteratively reweighted least integrated squares algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5662-5672, August.
- Umashanger, T. & Sriram, T.N., 2009. "L2E estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4243-4254, October.
- Tang, Qingguo & Karunamuni, Rohana J., 2013. "Minimum distance estimation in a finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 185-204.
- Zudi Lu & Yer Van Hui & Andy H. Lee, 2003. "Minimum Hellinger Distance Estimation for Finite Mixtures of Poisson Regression Models and Its Applications," Biometrics, The International Biometric Society, vol. 59(4), pages 1016-1026, December.
- Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
- Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
- Liming Xiang & Kelvin K. W. Yau & Yer Van Hui & Andy H. Lee, 2008. "Minimum Hellinger Distance Estimation for k-Component Poisson Mixture with Random Effects," Biometrics, The International Biometric Society, vol. 64(2), pages 508-518, June.
- Woo, Mi-Ja & Sriram, T.N., 2007. "Robust estimation of mixture complexity for count data," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4379-4392, May.
- Karunamuni, Rohana J. & Wu, Jingjing, 2011. "One-step minimum Hellinger distance estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3148-3164, December.
- Derek S. Young & Xi Chen & Dilrukshi C. Hewage & Ricardo Nilo-Poyanco, 2019. "Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1053-1082, December.
- Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
- Jingjing Wu & Tasnima Abedin & Qiang Zhao, 2023. "Semiparametric modelling of two-component mixtures with stochastic dominance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 39-70, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brenton Clarke & Peter McKinnon & Geoff Riley, 2012. "A fast robust method for fitting gamma distributions," Statistical Papers, Springer, vol. 53(4), pages 1001-1014, November.
- Kim, Byungsoo & Lee, Sangyeol, 2013. "Robust estimation for the covariance matrix of multivariate time series based on normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 125-140.
- Brenton R. Clarke & Thomas Davidson & Robert Hammarstrand, 2017. "A comparison of the $$L_2$$ L 2 minimum distance estimator and the EM-algorithm when fitting $${\varvec{{k}}}$$ k -component univariate normal mixtures," Statistical Papers, Springer, vol. 58(4), pages 1247-1266, December.
- Clarke, Brenton R. & Futschik, Andreas, 2007. "On the convergence of Newton's method when estimating higher dimensional parameters," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 916-931, May.
- Taewook Lee & Sangyeol Lee, 2009. "Consistency of minimizing a penalized density power divergence estimator for mixing distribution," Statistical Papers, Springer, vol. 50(1), pages 67-80, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:29:y:1998:i:1:p:81-103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.