IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i3p936-955.html
   My bibliography  Save this article

Martingale posterior distributions for cumulative hazard functions

Author

Listed:
  • Stephen G. Walker

Abstract

This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.

Suggested Citation

  • Stephen G. Walker, 2024. "Martingale posterior distributions for cumulative hazard functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 936-955, September.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:936-955
    DOI: 10.1111/sjos.12712
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12712
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97, March.
    2. Stephen G. Walker & Paul Damien & PuruShottam W. Laud & Adrian F. M. Smith, 1999. "Bayesian Nonparametric Inference for Random Distributions and Related Functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 485-527.
    3. Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    2. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    3. Antonio Lijoi & Igor Prunster, 2009. "Models beyond the Dirichlet process," Quaderni di Dipartimento 103, University of Pavia, Department of Economics and Quantitative Methods.
    4. Louise Alamichel & Daria Bystrova & Julyan Arbel & Guillaume Kon Kam King, 2024. "Bayesian mixture models (in)consistency for the number of clusters," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1619-1660, December.
    5. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    6. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    7. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    8. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    10. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    11. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    12. Reiß, Markus & Schmidt-Hieber, Johannes, 2020. "Posterior contraction rates for support boundary recovery," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6638-6656.
    13. Federico Bassetti & Lucia Ladelli, 2021. "Mixture of Species Sampling Models," Mathematics, MDPI, vol. 9(23), pages 1-27, December.
    14. Dmitry B. Rokhlin, 2021. "Relative utility bounds for empirically optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 437-462, June.
    15. Christopher A. Bush & Juhee Lee & Steven N. MacEachern, 2010. "Minimally informative prior distributions for non‐parametric Bayesian analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 253-268, March.
    16. Suzanne Sniekers & Aad Vaart, 2020. "Adaptive Bayesian credible bands in regression with a Gaussian process prior," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 386-425, August.
    17. Shota Gugushvili & Frank van der Meulen & Moritz Schauer & Peter Spreij, 2018. "Nonparametric Bayesian volatility estimation," Papers 1801.09956, arXiv.org, revised Mar 2019.
    18. Riva Palacio, Alan & Leisen, Fabrizio, 2018. "Integrability conditions for compound random measures," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 32-37.
    19. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    20. Xiang Zhang & Yanbing Zheng, 2014. "Nonparametric Bayesian inference for multivariate density functions using Feller priors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 321-340, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:3:p:936-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.