IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i12p5136-5142.html
   My bibliography  Save this article

Bootstrap quantile estimation via importance resampling

Author

Listed:
  • Hu, Jiaqiao
  • Su, Zheng

Abstract

We propose an adaptive importance resampling algorithm for estimating bootstrap quantiles of general statistics. The algorithm is especially useful in estimating extreme quantiles and can be easily used to construct bootstrap confidence intervals. Empirical results on real and simulated data sets show that the proposed algorithm is not only superior to the uniform resampling approach, but may also provide more than an order of magnitude of computational efficiency gains.

Suggested Citation

  • Hu, Jiaqiao & Su, Zheng, 2008. "Bootstrap quantile estimation via importance resampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5136-5142, August.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5136-5142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00282-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubinstein, Reuven Y., 1997. "Optimization of computer simulation models with rare events," European Journal of Operational Research, Elsevier, vol. 99(1), pages 89-112, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hua & Lange, Kenneth, 2011. "A fast procedure for calculating importance weights in bootstrap sampling," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 26-33, January.
    2. Shi Yang & Shi Weiping & Wang Mengqiao & Lee Ji-Hyun & Kang Huining & Jiang Hui, 2023. "Accurate and fast small p-value estimation for permutation tests in high-throughput genomic data analysis with the cross-entropy method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 22(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    2. Patelli, Edoardo & Feng, Geng & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2017. "Simulation methods for system reliability using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 327-337.
    3. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    4. Ludvík Friebel & Jana Friebelová, 2012. "Stochastic analysis of maintenance process costs in the IT industry: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 393-408, September.
    5. Singh, Vijay P. & Oh, Juik, 2015. "A Tsallis entropy-based redundancy measure for water distribution networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 360-376.
    6. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    7. Duc Manh Nguyen & Hoai An Le Thi & Tao Pham Dinh, 2014. "Solving the Multidimensional Assignment Problem by a Cross-Entropy method," Journal of Combinatorial Optimization, Springer, vol. 27(4), pages 808-823, May.
    8. Jasmit Shah & Somnath Datta & Susmita Datta, 2014. "A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics," Computational Statistics, Springer, vol. 29(6), pages 1749-1767, December.
    9. N-H Shih, 2005. "Estimating completion-time distribution in stochastic activity networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 744-749, June.
    10. Ali Eshragh & Jerzy Filar & Michael Haythorpe, 2011. "A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem," Annals of Operations Research, Springer, vol. 189(1), pages 103-125, September.
    11. Balesdent, Mathieu & Morio, Jérôme & Marzat, Julien, 2015. "Recommendations for the tuning of rare event probability estimators," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 68-78.
    12. Qun Niu & Ming You & Zhile Yang & Yang Zhang, 2021. "Economic Emission Dispatch Considering Renewable Energy Resources—A Multi-Objective Cross Entropy Optimization Approach," Sustainability, MDPI, vol. 13(10), pages 1-33, May.
    13. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhuang, Xin-Tian, 2018. "Modeling volatility dynamics using non-Gaussian stochastic volatility model based on band matrix routine," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 193-201.
    14. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. J Morio & R Pastel, 2012. "Plug-in estimation of d-dimensional density minimum volume set of a rare event in a complex system," Journal of Risk and Reliability, , vol. 226(3), pages 337-345, June.
    16. Marco Bee & Giuseppe Espa & Diego Giuliani & Flavio Santi, 2015. "A Cross-Entropy approach to the estimation of Generalised Linear Multilevel Models," DEM Working Papers 2015/04, Department of Economics and Management.
    17. Charles Audet & Jean Bigeon & Romain Couderc, 2021. "Combining Cross-Entropy and MADS Methods for Inequality Constrained Global Optimization," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.
    18. Agbeyegbe, Terence D., 2020. "Bayesian analysis of output gap in Barbados," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    19. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    20. João Ider & Adhimar Oliveira & Rero Rubinger & Ana Karoline Silva & Aluízio Assini & Geraldo Tiago-Filho & Marcia Baldissera, 2022. "Concentrated Solar Power with Thermoelectric Generator—An Approach Using the Cross-Entropy Optimization Method," Energies, MDPI, vol. 15(13), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5136-5142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.