IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2007i2p1047-1062.html
   My bibliography  Save this article

Two approximation methods to synthesize the power spectrum of fractional Gaussian noise

Author

Listed:
  • Ledesma, Sergio
  • Liu, Derong
  • Hernandez, Donato

Abstract

No abstract is available for this item.

Suggested Citation

  • Ledesma, Sergio & Liu, Derong & Hernandez, Donato, 2007. "Two approximation methods to synthesize the power spectrum of fractional Gaussian noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 1047-1062, October.
  • Handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:1047-1062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00073-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Purczynski, Jan & Wlodarski, Przemyslaw, 2006. "On fast generation of fractional Gaussian noise," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2537-2551, June.
    2. Vadim Teverovsky & Murad Taqqu, 1997. "Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(3), pages 279-304, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    2. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    3. Luis A. Gil-Alana, 2004. "Structural Change and the Order of Integration in Univariate Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 23(3), pages 239-254, April.
    4. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    5. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    6. Lahmiri, Salim, 2016. "Clustering of Casablanca stock market based on hurst exponent estimates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 310-318.
    7. Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.
    8. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    9. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    10. Thomas Mikosch, 2004. "Is it really long memory we see in financial returns?," Econometrics 0412002, University Library of Munich, Germany.
    11. Kucharczyk, Daniel & Wyłomańska, Agnieszka & Sikora, Grzegorz, 2018. "Variance change point detection for fractional Brownian motion based on the likelihood ratio test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 439-450.
    12. Xu, Jiawen & Perron, Pierre, 2014. "Forecasting return volatility: Level shifts with varying jump probability and mean reversion," International Journal of Forecasting, Elsevier, vol. 30(3), pages 449-463.
    13. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    14. repec:ipg:wpaper:2014-078 is not listed on IDEAS
    15. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    16. Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
    17. Shang Han Lin, 2020. "A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-39, January.
    18. R. K. Jana & Aviral Kumar Tiwari & Shawkat Hammoudeh, 2019. "The Inefficiency of Litecoin: A Dynamic Analysis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 447-457, June.
    19. John W. Galbraith & Greg Tkacz, 2007. "Forecast content and content horizons for some important macroeconomic time series," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(3), pages 935-953, August.
    20. Imen Zgueb Rejichi & Chaker Aloui & Duc Khuong Nguyen, 2014. "Assessing the efficiency of the MENA emerging stock markets: A sectoral perspective," Working Papers 2014-78, Department of Research, Ipag Business School.
    21. Morana, Claudio, 2006. "A small scale macroeconometric model for the Euro-12 area," Economic Modelling, Elsevier, vol. 23(3), pages 391-426, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2007:i:2:p:1047-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.