Online EM algorithm for mixture with application to internet traffic modeling
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ma, D.-J. & Makowski, A.M. & Shwartz, A., 1990. "Stochastic approximations for finite-state Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 35(1), pages 27-45, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
- L. Ippel & M. C. Kaptein & J. K. Vermunt, 2019. "Estimating Multilevel Models on Data Streams," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 41-64, March.
- Olivier Cappé & Eric Moulines, 2009. "On‐line expectation–maximization algorithm for latent data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 593-613, June.
- Sato, Aki-Hiro, 2012. "Patterns of regional travel behavior: An analysis of Japanese hotel reservation data," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 55-65.
- Ippel, L. & Kaptein, M.C. & Vermunt, J.K., 2016. "Estimating random-intercept models on data streams," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 169-182.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Prasenjit Karmakar & Shalabh Bhatnagar, 2018. "Two Time-Scale Stochastic Approximation with Controlled Markov Noise and Off-Policy Temporal-Difference Learning," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 130-151, February.
- Rydén, Tobias, 1997. "On recursive estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 79-96, February.
- Beggs, Alan, 2022.
"Reference points and learning,"
Journal of Mathematical Economics, Elsevier, vol. 100(C).
- Alan Beggs, 2015. "Reference Points and Learning," Economics Series Working Papers 767, University of Oxford, Department of Economics.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:4:p:1052-1071. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.