IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i12p3486-3499.html
   My bibliography  Save this article

A class of template splines

Author

Listed:
  • Sima, Diana M.
  • Van Huffel, Sabine

Abstract

No abstract is available for this item.

Suggested Citation

  • Sima, Diana M. & Van Huffel, Sabine, 2006. "A class of template splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3486-3499, August.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:12:p:3486-3499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00160-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & J. D. Opsomer, 2005. "Theory for penalised spline regression," Biometrika, Biometrika Trust, vol. 92(1), pages 105-118, March.
    2. Lee, Thomas C. M., 2003. "Smoothing parameter selection for smoothing splines: a simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 139-148, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bellio, Ruggero & Grassetti, Luca, 2011. "Semiparametric stochastic frontier models for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 71-83, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    2. Christian Schluter & Jackline Wahba, 2012. "Abstract: Illegal Migration, Wages, and Remittances: Semi-Parametric Estimation of Illegality Effects," Norface Discussion Paper Series 2012037, Norface Research Programme on Migration, Department of Economics, University College London.
    3. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    4. Wahba, Jackline & Schluter, Christian, 2009. "Illegal migration, wages and remittances- semi-parametric estimation of illegality effects," Discussion Paper Series In Economics And Econometrics 913, Economics Division, School of Social Sciences, University of Southampton.
    5. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    7. Wahba, Jackline & Schluter, Christian, 2009. "Illegal migration, wages and remittances- semi-parametric estimation of illegality effects," Discussion Paper Series In Economics And Econometrics 0913, Economics Division, School of Social Sciences, University of Southampton.
    8. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    9. Matthew Thorpe & Adam M. Johansen, 2018. "Pointwise convergence in probability of general smoothing splines," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 717-744, August.
    10. Jang, Dongik & Oh, Hee-Seok, 2011. "Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1029-1040, February.
    11. Simon N. Wood & Zheyuan Li & Gavin Shaddick & Nicole H. Augustin, 2017. "Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1199-1210, July.
    12. Lee, Thomas C. M., 2004. "Improved smoothing spline regression by combining estimates of different smoothness," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 133-140, April.
    13. Wu, Ximing & Sickles, Robin, 2018. "Semiparametric estimation under shape constraints," Econometrics and Statistics, Elsevier, vol. 6(C), pages 74-89.
    14. Göran Kauermann & Tatyana Krivobokova & Ludwig Fahrmeir, 2009. "Some asymptotic results on generalized penalized spline smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 487-503, April.
    15. Takuma Yoshida, 2016. "Asymptotics and smoothing parameter selection for penalized spline regression with various loss functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 278-303, November.
    16. Huan Wang & Mary C. Meyer & Jean D. Opsomer, 2013. "Constrained spline regression in the presence of AR(p) errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 809-827, December.
    17. Dursun AYDIN & Ersin YILMAZ, 2017. "Bandwidth Selection Problem for Nonparametric Regression Model with Right-Censored Data," Romanian Statistical Review, Romanian Statistical Review, vol. 65(2), pages 81-104, June.
    18. Rong Chen & Hua Liang & Jing Wang, 2011. "Determination of linear components in additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 367-383.
    19. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.
    20. Bhattacharjee, Arnab, 2004. "Estimation in hazard regression models under ordered departures from proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 517-536, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:12:p:3486-3499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.