IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i10p2752-2768.html
   My bibliography  Save this article

Robust Box-Cox transformations based on minimum residual autocorrelation

Author

Listed:
  • Marazzi, Alfio
  • Yohai, Victor J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Marazzi, Alfio & Yohai, Victor J., 2006. "Robust Box-Cox transformations based on minimum residual autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2752-2768, June.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2752-2768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00071-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Tsung-Chi, 2005. "Robust regression diagnostics with data transformations," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 875-891, June.
    2. Hössjer, Ola, 1992. "On the optimality of S-estimators," Statistics & Probability Letters, Elsevier, vol. 14(5), pages 413-419, July.
    3. Han, Aaron K., 1987. "A non-parametric analysis of transformations," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 191-209, July.
    4. Foster A. M. & Tian L. & Wei L. J., 2001. "Estimation for the Box-Cox Transformation Model Without Assuming Parametric Error Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1097-1101, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luke A. Prendergast & Simon J. Sheather, 2013. "On Sensitivity of Inverse Response Plot Estimation and the Benefits of a Robust Estimation Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(2), pages 219-237, June.
    2. Gianna S. Monti & Peter Filzmoser & Roland C. Deutsch, 2018. "A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2073-2086, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianxi Cai & Lu Tian & L. J. Wei, 2004. "Semi-parametric Box-Cox Power Transformation Models for Censored Survival Observations," Harvard University Biostatistics Working Paper Series 1006, Berkeley Electronic Press.
    2. Arkadiusz Szydlowski, 2017. "Testing a parametric transformation model versus a nonparametric alternative," Discussion Papers in Economics 17/15, Division of Economics, School of Business, University of Leicester.
    3. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    4. Chiappori, Pierre-Andre & Komunjer, Ivana, 2008. "Correct Specification and Identification of Nonparametric Transformation Models," University of California at San Diego, Economics Working Paper Series qt4v12m2rg, Department of Economics, UC San Diego.
    5. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    6. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    7. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2005. "Bootstrap prediction intervals for power-transformed time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 219-235.
    8. Komunjer, Ivana, 2009. "Global identification of the semiparametric Box-Cox model," Economics Letters, Elsevier, vol. 104(2), pages 53-56, August.
    9. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    10. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    11. Cheng, Tsung-Chi, 2011. "Robust diagnostics for the heteroscedastic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1845-1866, April.
    12. Schwiebert, Jörg, 2012. "Semiparametric Estimation of a Sample Selection Model in the Presence of Endogeneity," Hannover Economic Papers (HEP) dp-504, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    13. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    14. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    15. Ben, Marta García & Martínez, Elena & Yohai, Víctor J., 2006. "Robust estimation for the multivariate linear model based on a [tau]-scale," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1600-1622, August.
    16. Chesher, Andrew, 2009. "Excess heterogeneity, endogeneity and index restrictions," Journal of Econometrics, Elsevier, vol. 152(1), pages 37-45, September.
    17. Atkinson, Anthony C. & Riani, Marco & Corbellini, Aldo, 2021. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.
    18. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    19. Poirier, Alexandre, 2017. "Efficient estimation in models with independence restrictions," Journal of Econometrics, Elsevier, vol. 196(1), pages 1-22.
    20. Roland Weigand, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," Working Papers 144, Bavarian Graduate Program in Economics (BGPE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2752-2768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.