IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v45y2004i3p639-650.html
   My bibliography  Save this article

Comparison of hierarchical and marginal likelihood estimators for binary outcomes

Author

Listed:
  • Yun, Sungcheol
  • Lee, Youngjo

Abstract

No abstract is available for this item.

Suggested Citation

  • Yun, Sungcheol & Lee, Youngjo, 2004. "Comparison of hierarchical and marginal likelihood estimators for binary outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 639-650, April.
  • Handle: RePEc:eee:csdana:v:45:y:2004:i:3:p:639-650
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00033-1
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longford, N. T., 1994. "Logistic regression with random coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 17(1), pages 1-15, January.
    2. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    3. Emmanuel Lesaffre & Bart Spiessens, 2001. "On the effect of the number of quadrature points in a logistic random effects model: an example," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 325-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei Wang & Erin L. Abner & Changrui Liu & David W. Fardo & Frederick A. Schmitt & Gregory A. Jicha & Linda J. Van Eldik & Richard J. Kryscio, 2023. "Estimating random effects in a finite Markov chain with absorbing states: Application to cognitive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 304-321, August.
    2. Jin, Shaobo & Lee, Youngjo, 2024. "Standard error estimates in hierarchical generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    3. Noh, Maengseok & Lee, Youngjo, 2007. "REML estimation for binary data in GLMMs," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 896-915, May.
    4. Carling, Kenneth & Alam, Moudud, 2007. "Computationally feasible estimation of the covariance structure in Generalized linear mixed models(GLMM)," Working Papers 2007:14, Örebro University, School of Business.
    5. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.
    6. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez, Jorge & Tuerlinckx, Francis & De Boeck, Paul & Cools, Ronald, 2006. "Numerical integration in logistic-normal models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1535-1548, December.
    2. Baghishani, Hossein & Mohammadzadeh, Mohsen, 2011. "A data cloning algorithm for computing maximum likelihood estimates in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1748-1759, April.
    3. Tutz, Gerhard & Kauermann, Goran, 2003. "Generalized linear random effects models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 43(1), pages 13-28, May.
    4. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    5. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    6. Gonzalez-Manteiga, W. & Lombardia, M.J. & Molina, I. & Morales, D. & Santamaria, L., 2007. "Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2720-2733, February.
    7. Wu, Jianmin & Bentler, Peter M., 2012. "Application of H-likelihood to factor analysis models with binary response data," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 72-79.
    8. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    9. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    10. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    11. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    12. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    13. Altaf H Khan, 2019. "An Application of Sinc Function based Quadrature Method in Statistical Models," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(4), pages 91-96, May.
    14. Ricardo Smith Ramírez, 2007. "FIML estimation of treatment effect models with endogenous selection and multiple censored responses via a Monte Carlo EM Algorithm," Working Papers DTE 403, CIDE, División de Economía.
    15. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    16. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    17. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
    18. Hammon, Angelina & Zinn, Sabine, 2020. "Multiple imputation of binary multilevel missing not at random data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 69(3), pages 547-564.
    19. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    20. Kauermann, Goran & Xu, Ronghui & Vaida, Florin, 2008. "Stacked Laplace-EM algorithm for duration models with time-varying and random effects," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2514-2528, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:45:y:2004:i:3:p:639-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.