IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v45y2004i2p269-286.html
   My bibliography  Save this article

A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters

Author

Listed:
  • Duczmal, Luiz
  • Assuncao, Renato

Abstract

No abstract is available for this item.

Suggested Citation

  • Duczmal, Luiz & Assuncao, Renato, 2004. "A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 269-286, March.
  • Handle: RePEc:eee:csdana:v:45:y:2004:i:2:p:269-286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00302-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario Biggeri & Danilo Gambelli & Christine Phillips, 1999. "Small and medium enterprise theory: evidence for Chinese TVEs," Journal of International Development, John Wiley & Sons, Ltd., vol. 11(2), pages 197-219.
    2. Julian Besag & James Newell, 1991. "The Detection of Clusters in Rare Diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(1), pages 143-155, January.
    3. Aarts, Emile H. L. & Korst, Jan H. M., 1989. "Boltzmann machines for travelling salesman problems," European Journal of Operational Research, Elsevier, vol. 39(1), pages 79-95, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea J. Cook & Diane R. Gold & Yi Li, 2007. "Spatial Cluster Detection for Censored Outcome Data," Biometrics, The International Biometric Society, vol. 63(2), pages 540-549, June.
    2. Rhonda J. Rosychuk & Carolyn Huston & Narasimha G. N. Prasad, 2006. "Spatial Event Cluster Detection Using a Compound Poisson Distribution," Biometrics, The International Biometric Society, vol. 62(2), pages 465-470, June.
    3. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    4. Smida, Zaineb & Cucala, Lionel & Gannoun, Ali & Durif, Ghislain, 2022. "A Wilcoxon-Mann-Whitney spatial scan statistic for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Fitzpatrick, Dylan & Ni, Yun & Neill, Daniel B., 2021. "Support vector subset scan for spatial pattern detection," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Wan, You & Pei, Tao & Zhou, Chenghu & Jiang, Yong & Qu, Chenxu & Qiao, Youlin, 2012. "ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 283-296.
    7. Toshiro Tango & Kunihiko Takahashi & Kazuaki Kohriyama, 2011. "A Space–Time Scan Statistic for Detecting Emerging Outbreaks," Biometrics, The International Biometric Society, vol. 67(1), pages 106-115, March.
    8. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    9. Silva, Ivair Ramos & Ernesto, Dulcidia & Oliveira, Fernando & Marques, Reinaldo & Oliveira, Anderson, 2021. "Monte Carlo Test for Stochastic Trend in Space State Models for the Location-Scale Family," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 40(2), April.
    10. Ran Zhang & Jing Li & Qingyun Du & Fu Ren, 2015. "Basic farmland zoning and protection under spatial constraints with a particle swarm optimisation multiobjective decision model: a case study of Yicheng, China," Environment and Planning B, , vol. 42(6), pages 1098-1123, November.
    11. Chadoeuf, J. & Certain, G. & Bellier, E. & Bar-Hen, A. & Couteron, P. & Monestiez, P. & Bretagnolle, V., 2011. "Estimating inter-group interaction radius for point processes with nested spatial structures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 627-640, January.
    12. Inkyung Jung, 2019. "Spatial scan statistics for matched case-control data," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-10, August.
    13. Xing Zhao & Xiao-Hua Zhou & Zijian Feng & Pengfei Guo & Hongyan He & Tao Zhang & Lei Duan & Xiaosong Li, 2013. "A Scan Statistic for Binary Outcome Based on Hypergeometric Probability Model, with an Application to Detecting Spatial Clusters of Japanese Encephalitis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-7, June.
    14. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    15. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    16. Silva, Ivair R. & Duczmal, Luiz & Kulldorff, Martin, 2021. "Confidence intervals for spatial scan statistic," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    17. Costa, Marcelo Azevedo & Assunção, Renato Martins & Kulldorff, Martin, 2012. "Constrained spanning tree algorithms for irregularly-shaped spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1771-1783.
    18. Lan Huang & Martin Kulldorff & David Gregorio, 2007. "A Spatial Scan Statistic for Survival Data," Biometrics, The International Biometric Society, vol. 63(1), pages 109-118, March.
    19. Demattei[diaeresis], Christophe & Molinari, Nicolas & Daures, Jean-Pierre, 2007. "Arbitrarily shaped multiple spatial cluster detection for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3931-3945, May.
    20. Lee, Myeonggyun & Jung, Inkyung, 2019. "Modified spatial scan statistics using a restricted likelihood ratio for ordinal outcome data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 28-39.
    21. Andrea J. Cook & Yi Li & David Arterburn & Ram C. Tiwari, 2010. "Spatial Cluster Detection for Weighted Outcomes Using Cumulative Geographic Residuals," Biometrics, The International Biometric Society, vol. 66(3), pages 783-792, September.
    22. Zhou, Ruoyu & Shu, Lianjie & Su, Yan, 2015. "An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 134-146.
    23. Duczmal, Luiz & Cancado, Andre L.F. & Takahashi, Ricardo H.C. & Bessegato, Lupercio F., 2007. "A genetic algorithm for irregularly shaped spatial scan statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 43-52, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    2. repec:rri:wpaper:200506 is not listed on IDEAS
    3. Murat Yazici, 2017. "PSpatial Point Pattern Analyses and its Use in Geographical Epidemiology," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 99-103, May.
    4. Tomoya Mori & Tony E. Smith, 2014. "A probabilistic modeling approach to the detection of industrial agglomerations," Journal of Economic Geography, Oxford University Press, vol. 14(3), pages 547-588.
    5. Ben Said FOUED, 2015. "Tunisian Coastal Cities Attractiveness And Amenities," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(3), pages 49-70, August.
    6. Tonglin Zhang & Ge Lin, 2008. "Identification of local clusters for count data: a model-based Moran's I test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 293-306.
    7. Tomoya Mori & Tony E. Smith, 2009. "A Reconsideration of the NAS Rule from an Industrial Agglomeration Perspective," KIER Working Papers 669, Kyoto University, Institute of Economic Research.
    8. Kristy Buzard & Gerald A. Carlino & Jake Carr & Robert M. Hunt & Tony E. Smith, 2015. "Localized Knowledge Spillovers: Evidence from the Agglomeration of American R&D Labs and Patent Data," Working Papers 15-3, Federal Reserve Bank of Philadelphia.
    9. Youngho Kim & Morton O’Kelly, 2008. "A bootstrap based space–time surveillance model with an application to crime occurrences," Journal of Geographical Systems, Springer, vol. 10(2), pages 141-165, June.
    10. Kristy Buzard & Gerald A. Carlino & Jake Carr & Robert M. Hunt & Tony E. Smith, 2017. "The Agglomeration of American Research and Development Labs," Working Papers 17-18, Federal Reserve Bank of Philadelphia.
    11. Marvin M. Smith & Tony E. Smith & John Wackes, 2007. "Alternative financial service providers and the spatial void hypothesis," Community Affairs Discussion Paper 07-01, Federal Reserve Bank of Philadelphia.
    12. Kui-Wai Li, 2018. "Analyzing The Tfp Performance Of Chinese Industrial Enterprises," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(05), pages 1263-1284, December.
    13. Katarzyna Kopczewska, 2022. "Spatial machine learning: new opportunities for regional science," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 713-755, June.
    14. Ronald E. Gangnon & Murray K. Clayton, 2000. "Bayesian Detection and Modeling of Spatial Disease Clustering," Biometrics, The International Biometric Society, vol. 56(3), pages 922-935, September.
    15. Peter Congdon, 1995. "Localities for Epidemiological Monitoring and Health Policy," Urban Studies, Urban Studies Journal Limited, vol. 32(7), pages 1175-1198, August.
    16. Ge Lin & Tonglin Zhang, 2005. "Loglinear Residual Tests of Moran's I Autorrelation: An Application to Kentucky Breast Cancer Data," Working Papers Working Paper 2005-06, Regional Research Institute, West Virginia University.
    17. Smith, Tony E. & Smith, Marvin M. & Wackes, John, 2008. "Alternative financial service providers and the spatial void hypothesis," Regional Science and Urban Economics, Elsevier, vol. 38(3), pages 205-227, May.
    18. Trisalyn Nelson & Barry Boots, 2005. "Identifying insect infestation hot spots: an approach using conditional spatial randomization," Journal of Geographical Systems, Springer, vol. 7(3), pages 291-311, December.
    19. Hosik Choi & Eunjung Song & Seung-sik Hwang & Woojoo Lee, 2018. "A modified generalized lasso algorithm to detect local spatial clusters for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 537-563, October.
    20. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Vaithyanathan, Shivakumar & Burke, Laura I. & Magent, Michael A., 1996. "Massively parallel analog tabu search using neural networks applied to simple plant location problems," European Journal of Operational Research, Elsevier, vol. 93(2), pages 317-330, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:45:y:2004:i:2:p:269-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.