IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0065419.html
   My bibliography  Save this article

A Scan Statistic for Binary Outcome Based on Hypergeometric Probability Model, with an Application to Detecting Spatial Clusters of Japanese Encephalitis

Author

Listed:
  • Xing Zhao
  • Xiao-Hua Zhou
  • Zijian Feng
  • Pengfei Guo
  • Hongyan He
  • Tao Zhang
  • Lei Duan
  • Xiaosong Li

Abstract

As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff’s methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff’s statistics for clusters of high population density or large size; otherwise Kulldorff’s statistics are superior.

Suggested Citation

  • Xing Zhao & Xiao-Hua Zhou & Zijian Feng & Pengfei Guo & Hongyan He & Tao Zhang & Lei Duan & Xiaosong Li, 2013. "A Scan Statistic for Binary Outcome Based on Hypergeometric Probability Model, with an Application to Detecting Spatial Clusters of Japanese Encephalitis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-7, June.
  • Handle: RePEc:plo:pone00:0065419
    DOI: 10.1371/journal.pone.0065419
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0065419
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0065419&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0065419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Duczmal, Luiz & Assuncao, Renato, 2004. "A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 269-286, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, You & Pei, Tao & Zhou, Chenghu & Jiang, Yong & Qu, Chenxu & Qiao, Youlin, 2012. "ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 283-296.
    2. Ran Zhang & Jing Li & Qingyun Du & Fu Ren, 2015. "Basic farmland zoning and protection under spatial constraints with a particle swarm optimisation multiobjective decision model: a case study of Yicheng, China," Environment and Planning B, , vol. 42(6), pages 1098-1123, November.
    3. Inkyung Jung, 2019. "Spatial scan statistics for matched case-control data," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-10, August.
    4. Silva, Ivair R. & Duczmal, Luiz & Kulldorff, Martin, 2021. "Confidence intervals for spatial scan statistic," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    5. Lee, Myeonggyun & Jung, Inkyung, 2019. "Modified spatial scan statistics using a restricted likelihood ratio for ordinal outcome data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 28-39.
    6. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    7. Smida, Zaineb & Laurent, Thibault & Cucala, Lionel, 2024. "A Hotelling spatial scan statistic for functional data: application to economic and climate data," TSE Working Papers 24-1583, Toulouse School of Economics (TSE).
    8. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    9. Zhou, Ruoyu & Shu, Lianjie & Su, Yan, 2015. "An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 134-146.
    10. Andrea J. Cook & Diane R. Gold & Yi Li, 2007. "Spatial Cluster Detection for Censored Outcome Data," Biometrics, The International Biometric Society, vol. 63(2), pages 540-549, June.
    11. Lan Huang & Martin Kulldorff & David Gregorio, 2007. "A Spatial Scan Statistic for Survival Data," Biometrics, The International Biometric Society, vol. 63(1), pages 109-118, March.
    12. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    13. Costa, Marcelo Azevedo & Assunção, Renato Martins & Kulldorff, Martin, 2012. "Constrained spanning tree algorithms for irregularly-shaped spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1771-1783.
    14. Toshiro Tango & Kunihiko Takahashi & Kazuaki Kohriyama, 2011. "A Space–Time Scan Statistic for Detecting Emerging Outbreaks," Biometrics, The International Biometric Society, vol. 67(1), pages 106-115, March.
    15. Smida, Zaineb & Cucala, Lionel & Gannoun, Ali & Durif, Ghislain, 2022. "A Wilcoxon-Mann-Whitney spatial scan statistic for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    16. Andrea J. Cook & Yi Li & David Arterburn & Ram C. Tiwari, 2010. "Spatial Cluster Detection for Weighted Outcomes Using Cumulative Geographic Residuals," Biometrics, The International Biometric Society, vol. 66(3), pages 783-792, September.
    17. Rhonda J. Rosychuk & Carolyn Huston & Narasimha G. N. Prasad, 2006. "Spatial Event Cluster Detection Using a Compound Poisson Distribution," Biometrics, The International Biometric Society, vol. 62(2), pages 465-470, June.
    18. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    19. Silva, Ivair Ramos & Ernesto, Dulcidia & Oliveira, Fernando & Marques, Reinaldo & Oliveira, Anderson, 2021. "Monte Carlo Test for Stochastic Trend in Space State Models for the Location-Scale Family," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 40(2), April.
    20. Chadoeuf, J. & Certain, G. & Bellier, E. & Bar-Hen, A. & Couteron, P. & Monestiez, P. & Bretagnolle, V., 2011. "Estimating inter-group interaction radius for point processes with nested spatial structures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 627-640, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0065419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.