IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v34y2000i2p139-164.html
   My bibliography  Save this article

Consequences of misspecifying assumptions in nonlinear mixed effects models

Author

Listed:
  • Hartford, Alan
  • Davidian, Marie

Abstract

No abstract is available for this item.

Suggested Citation

  • Hartford, Alan & Davidian, Marie, 2000. "Consequences of misspecifying assumptions in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 34(2), pages 139-164, August.
  • Handle: RePEc:eee:csdana:v:34:y:2000:i:2:p:139-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(99)00076-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huageng Tao & Mari Palta & Brian S. Yandell & Michael A. Newton, 1999. "An Estimation Method for the Semiparametric Mixed Effects Model," Biometrics, The International Biometric Society, vol. 55(1), pages 102-110, March.
    2. Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
    3. Wolfinger, Russell D. & Xihong Lin, 1997. "Two Taylor-series approximation methods for nonlinear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 465-490, September.
    4. Bengt Muthén & Kerby Shedden, 1999. "Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm," Biometrics, The International Biometric Society, vol. 55(2), pages 463-469, June.
    5. Hulin Wu & A. Adam Ding, 1999. "Population HIV-1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials," Biometrics, The International Biometric Society, vol. 55(2), pages 410-418, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    2. Vock, David & Davidian, Marie & Tsiatis, Anastasios, 2014. "SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(c02).
    3. Ruth M. Pfeiffer & Louise Ryan & Augusto Litonjua & David Pee, 2005. "A Case-Cohort Design for Assessing Covariate Effects in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 61(4), pages 982-991, December.
    4. Bart Spiessens & Emmanuel Lesaffre & Geert Verbeke & KyungMann Kim, 2002. "Group Sequential Methods for an Ordinal Logistic Random-Effects Model Under Misspecification," Biometrics, The International Biometric Society, vol. 58(3), pages 569-575, September.
    5. Zambom, Adriano Zanin & Akritas, Michael G., 2017. "NonpModelCheck: An R Package for Nonparametric Lack-of-Fit Testing and Variable Selection," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i10).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    2. Liang Li & Jun Shao & Mari Palta, 2005. "A Longitudinal Measurement Error Model with a Semicontinuous Covariate," Biometrics, The International Biometric Society, vol. 61(3), pages 824-830, September.
    3. Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
    4. Zeinolabedin Najafi & Karim Zare & Mohammad Reza Mahmoudi & Soheil Shokri & Amir Mosavi, 2022. "Inference and Local Influence Assessment in a Multifactor Skew-Normal Linear Mixed Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    5. Vock, David & Davidian, Marie & Tsiatis, Anastasios, 2014. "SNP_NLMM: A SAS Macro to Implement a Flexible Random Effects Density for Generalized Linear and Nonlinear Mixed Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(c02).
    6. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    7. Wendimagegn Ghidey & Emmanuel Lesaffre & Paul Eilers, 2004. "Smooth Random Effects Distribution in a Linear Mixed Model," Biometrics, The International Biometric Society, vol. 60(4), pages 945-953, December.
    8. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    9. Ho, Remus K.W. & Hu, Inchi, 2008. "Flexible modelling of random effects in linear mixed models--A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1347-1361, January.
    10. Hyejin KO & Marie Davidian, 2000. "Correcting for Measurement Error in Individual-Level Covariates in Nonlinear Mixed Effects Models," Biometrics, The International Biometric Society, vol. 56(2), pages 368-375, June.
    11. Michael Prendergast & David Huang & Yih-Ing Hser, 2008. "Patterns of Crime and Drug Use Trajectories in Relation to Treatment Initiation and 5-Year Outcomes," Evaluation Review, , vol. 32(1), pages 59-82, February.
    12. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    13. Getachew A. Dagne, 2016. "A growth mixture Tobit model: application to AIDS studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1174-1185, July.
    14. Bacci, Silvia & Bartolucci, Francesco & Pigini, Claudia & Signorelli, Marcello, 2014. "A finite mixture latent trajectory model for hirings and separations in the labor market," MPRA Paper 59730, University Library of Munich, Germany.
    15. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    16. Wei Liu & Shuyou Li, 2015. "A multiple imputation approach to nonlinear mixed-effects models with covariate measurement errors and missing values," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 463-476, March.
    17. Francesco Bartolucci & Ivonne Solis-Trapala, 2010. "Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 725-743, December.
    18. Peter Hall & Tapabrata Maiti, 2009. "Deconvolution methods for non‐parametric inference in two‐level mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 703-718, June.
    19. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    20. Yuan Liu & Hongyun Liu, 2019. "Effects of Distance and Shape on the Estimation of the Piecewise Growth Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 659-677, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:34:y:2000:i:2:p:139-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.