IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v077i10.html
   My bibliography  Save this article

NonpModelCheck: An R Package for Nonparametric Lack-of-Fit Testing and Variable Selection

Author

Listed:
  • Zambom, Adriano Zanin
  • Akritas, Michael G.

Abstract

We describe the R package NonpModelCheck for hypothesis testing and variable selection in nonparametric regression. This package implements functions to perform hypothesis testing for the significance of a predictor or a group of predictors in a fully nonparametric heteroscedastic regression model using high-dimensional one-way ANOVA. Based on the p values from the test of each covariate, three different algorithms allow the user to perform variable selection using false discovery rate corrections. A function for classical local polynomial regression is implemented for the multivariate context, where the degree of the polynomial can be as large as needed and bandwidth selection strategies are built in.

Suggested Citation

  • Zambom, Adriano Zanin & Akritas, Michael G., 2017. "NonpModelCheck: An R Package for Nonparametric Lack-of-Fit Testing and Variable Selection," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i10).
  • Handle: RePEc:jss:jstsof:v:077:i10
    DOI: http://hdl.handle.net/10.18637/jss.v077.i10
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v077i10/v77i10.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v077i10/NonpModelCheck_3.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v077i10/v77i10.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v077i10/v77i10.m
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v077i10/prostate.txt
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v077.i10?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
    3. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    4. Lavergne, Pascal & Vuong, Quang, 2000. "Nonparametric Significance Testing," Econometric Theory, Cambridge University Press, vol. 16(4), pages 576-601, August.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Hartford, Alan & Davidian, Marie, 2000. "Consequences of misspecifying assumptions in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 34(2), pages 139-164, August.
    7. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
    8. Elias Masry, 1996. "Multivariate Local Polynomial Regression For Time Series:Uniform Strong Consistency And Rates," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 571-599, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wei-Hsueh & Huang, Li-Shan & Yang, Cheng-Tao, 2022. "Invariant tests for functional data with application to an earthquake impact study," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    2. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    3. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    4. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    5. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    6. Lavergne, Pascal & Maistre, Samuel & Patilea, Valentin, 2014. "A Significance Test for Covariates in Nonparametric Regression," TSE Working Papers 14-502, Toulouse School of Economics (TSE).
    7. Wang, Luya, 2022. "Adaptive testing using data-driven method selecting smoothing parameters," Economics Letters, Elsevier, vol. 215(C).
    8. Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
    9. Oliver Linton & Pedro Gozalo, 1995. "Testing Additivity in Generalized Nonparametric Regression Models," Cowles Foundation Discussion Papers 1106, Cowles Foundation for Research in Economics, Yale University.
    10. Ivan Korolev, 2018. "A Consistent Heteroskedasticity Robust LM Type Specification Test for Semiparametric Models," Papers 1810.07620, arXiv.org, revised Nov 2019.
    11. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    12. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    13. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    14. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Jinhyun Lee, 2013. "A Consistent Nonparametric Bootstrap Test of Exogeneity," Discussion Paper Series, School of Economics and Finance 201316, School of Economics and Finance, University of St Andrews.
    18. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    19. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    20. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:077:i10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.