IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v19y1995i6p613-630.html
   My bibliography  Save this article

A convergent algorithm for quantile regression with smoothing splines

Author

Listed:
  • Bosch, Ronald J.
  • Ye, Yinyu
  • Woodworth, George G.

Abstract

No abstract is available for this item.

Suggested Citation

  • Bosch, Ronald J. & Ye, Yinyu & Woodworth, George G., 1995. "A convergent algorithm for quantile regression with smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 19(6), pages 613-630, June.
  • Handle: RePEc:eee:csdana:v:19:y:1995:i:6:p:613-630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-9473(94)00018-E
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roger W. Koenker & Vasco D'Orey, 1987. "Computing Regression Quantiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 383-393, November.
    2. Cunningham, J. K. & Eubank, R. L. & Hsing, T., 1991. "M-type smoothing splines with auxiliary scale estimation," Computational Statistics & Data Analysis, Elsevier, vol. 11(1), pages 43-51, January.
    3. Antoch, J. & Janssen, P., 1989. "Nonparametric regression M-quantiles," Statistics & Probability Letters, Elsevier, vol. 8(4), pages 355-362, September.
    4. Michael J. Todd & Yinyu Ye, 1988. "A Centered Projective Algorithm for Linear Programming," Cowles Foundation Discussion Papers 861, Cowles Foundation for Research in Economics, Yale University.
    5. Prochazka, Bohumir, 1988. "Regression quantiles and trimmed least squares estimator in the nonlinear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 6(4), pages 385-391, June.
    6. Michael J. Todd & Yinyu Ye, 1990. "A Centered Projective Algorithm for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 508-529, August.
    7. T. J. Cole, 1988. "Fitting Smoothed Centile Curves to Reference Data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 151(3), pages 385-406, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DeRossi, G. & Harvey, A., 2006. "Time-Varying Quantiles," Cambridge Working Papers in Economics 0649, Faculty of Economics, University of Cambridge.
    2. De Rossi, Giuliano & Harvey, Andrew, 2009. "Quantiles, expectiles and splines," Journal of Econometrics, Elsevier, vol. 152(2), pages 179-185, October.
    3. Rodrigues, T. & Dortet-Bernadet, J.-L. & Fan, Y., 2019. "Simultaneous fitting of Bayesian penalised quantile splines," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 93-109.
    4. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    5. Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
    6. Marcio Laurini, 2007. "A note on the use of quantile regression in beta convergence analysis," Economics Bulletin, AccessEcon, vol. 3(52), pages 1-8.
    7. Zhang, Likun & Castillo, Enrique del & Berglund, Andrew J. & Tingley, Martin P. & Govind, Nirmal, 2020. "Computing confidence intervals from massive data via penalized quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Poletti Laurini, Márcio & Moura, Marcelo, 2010. "Constrained smoothing B-splines for the term structure of interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 339-350, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freund, Robert Michael., 1989. "A potential-function reduction algorithm for solving a linear program directly from an infeasible "warm start"," Working papers 3079-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    2. Alok Bhargava, 2006. "Modelling the Health of Filipino Children," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 11, pages 153-168, World Scientific Publishing Co. Pte. Ltd..
    3. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    4. Xiaoning Li & Mulati Tuerde & Xijian Hu, 2023. "Variational Bayesian Inference for Quantile Regression Models with Nonignorable Missing Data," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    5. Nader Naifar & Shawkat Hammoudeh & Aviral Kumar Tiwari, 2019. "Do Energy and Banking CDS Sector Spreads Reflect Financial Risks and Economic Policy Uncertainty? A Time-Scale Decomposition Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 507-534, August.
    6. Fiteni, Inmaculada, 2004. "[tau]-estimators of regression models with structural change of unknown location," Journal of Econometrics, Elsevier, vol. 119(1), pages 19-44, March.
    7. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    8. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    9. Qadan, Mahmoud & Jacob, Maram, 2022. "The value premium and investors' appetite for risk," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 194-219.
    10. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.
    11. Kuan‐Min Wang, 2010. "Monetary Policy Impulses and Retail Interest Rate Pass‐Through in Asian Banking Markets," Asian Economic Journal, East Asian Economic Association, vol. 24(3), pages 253-287, September.
    12. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    13. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Gelos, Gaston & Gornicka, Lucyna & Koepke, Robin & Sahay, Ratna & Sgherri, Silvia, 2022. "Capital flows at risk: Taming the ebbs and flows," Journal of International Economics, Elsevier, vol. 134(C).
    15. Georges Bresson & Guy Lacroix & Mohammad Arshad Rahman, 2021. "Bayesian panel quantile regression for binary outcomes with correlated random effects: an application on crime recidivism in Canada," Empirical Economics, Springer, vol. 60(1), pages 227-259, January.
    16. Daniel Miles, 2002. "Small sample behaviour of quantile estimators," Applied Economics Letters, Taylor & Francis Journals, vol. 9(14), pages 911-913.
    17. Rodríguez García, Martha del Pilar & Cortez Alejandro, Klender Aimer & Méndez Sáenz, Alma Berenice & Garza Sánchez, Héctor Horacio, 2017. "Does an IFRS adoption increase value relevance and earnings timeliness in Latin America?," Emerging Markets Review, Elsevier, vol. 30(C), pages 155-168.
    18. S. Cafieri & M. D’Apuzzo & V. Simone & D. Serafino & G. Toraldo, 2007. "Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 355-366, December.
    19. Bantli, Faouzi El & Hallin, Marc, 1999. "L1-estimation in linear models with heterogeneous white noise," Statistics & Probability Letters, Elsevier, vol. 45(4), pages 305-315, December.
    20. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:19:y:1995:i:6:p:613-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.