IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v185y2023ics0167947323000737.html
   My bibliography  Save this article

Neural networks for parameter estimation in intractable models

Author

Listed:
  • Lenzi, Amanda
  • Bessac, Julie
  • Rudi, Johann
  • Stein, Michael L.

Abstract

The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.

Suggested Citation

  • Lenzi, Amanda & Bessac, Julie & Rudi, Johann & Stein, Michael L., 2023. "Neural networks for parameter estimation in intractable models," Computational Statistics & Data Analysis, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:csdana:v:185:y:2023:i:c:s0167947323000737
    DOI: 10.1016/j.csda.2023.107762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323000737
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Houlin & Zhu, Hanbing & Wang, Xuejun, 2024. "Change point detection via feedforward neural networks with theoretical guarantees," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    2. Sweta Rai & Alexis Hoffman & Soumendra Lahiri & Douglas W. Nychka & Stephan R. Sain & Soutir Bandyopadhyay, 2024. "Fast parameter estimation of generalized extreme value distribution using neural networks," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:185:y:2023:i:c:s0167947323000737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.