IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v191y2024ics0167947323001871.html
   My bibliography  Save this article

Clustering-based inter-regional correlation estimation

Author

Listed:
  • Lbath, Hanâ
  • Petersen, Alexander
  • Meiring, Wendy
  • Achard, Sophie

Abstract

A novel non-parametric estimator of the correlation between grouped measurements of a quantity is proposed in the presence of noise. The main motivation is functional brain network construction from fMRI data, where brain regions correspond to groups of spatial units, and correlation between region pairs defines the network. The challenge resides in the fact that both noise and intra-regional correlation lead to inconsistent inter-regional correlation estimation using classical approaches. While some existing methods handle either one of these issues, no non-parametric approaches tackle both simultaneously. To address this problem, a trade-off between two procedures is proposed: correlating regional averages, which is not robust to intra-regional correlation; and averaging pairwise inter-regional correlations, which is not robust to noise. To that end, the data is projected onto a space where Euclidean distance is used as a proxy for sample correlation. Hierarchical clustering is then leveraged to gather together highly correlated variables within each region prior to inter-regional correlation estimation. The convergence of the proposed estimator is analyzed, and the proposed approach is empirically shown to surpass several other popular methods in terms of quality. Illustrations on real-world datasets that further demonstrate its effectiveness are provided.

Suggested Citation

  • Lbath, Hanâ & Petersen, Alexander & Meiring, Wendy & Achard, Sophie, 2024. "Clustering-based inter-regional correlation estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323001871
    DOI: 10.1016/j.csda.2023.107876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001871
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    2. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    3. Chavent, Marie & Kuentz-Simonet, Vanessa & Liquet, Benoît & Saracco, Jérôme, 2012. "ClustOfVar: An R Package for the Clustering of Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i13).
    4. B. Rosner & A. Donner & C. H. Hennekens, 1977. "Estimation of Interclass Correlation from Familial Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(2), pages 179-187, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    2. Yuheng Lin & Dooruj Rambaccussing & Yu Zhu, 2024. "The impact of international students in the UK on the cultural goods trade," French Stata Users' Group Meetings 2024 29, Stata Users Group.
    3. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    4. Borisova, Ekaterina & Gründler, Klaus & Hackenberger, Armin & Harter, Anina & Potrafke, Niklas & Schoors, Koen, 2023. "Crisis experience and the deep roots of COVID-19 vaccination preferences," European Economic Review, Elsevier, vol. 160(C).
    5. Berthélemy Michel & Bonev Petyo & Dussaux Damien & Söderberg Magnus, 2019. "Methods for strengthening a weak instrument in the case of a persistent treatment," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-30, February.
    6. Carrieri, Vincenzo & Madio, Leonardo & Principe, Francesco, 2019. "Light cannabis and organized crime: Evidence from (unintended) liberalization in Italy," European Economic Review, Elsevier, vol. 113(C), pages 63-76.
    7. Jung, Haeil & Kim, Jun Hyung & Hong, Gihyeon, 2023. "Impacts of the COVID-19 crisis on single-person households in South Korea," Journal of Asian Economics, Elsevier, vol. 84(C).
    8. Cain Polidano & Justin van de Ven & Sarah Voitchovsky, 2017. "The Power of Self-Interest: Effects of Education and Training Entitlements in Later-Life," Melbourne Institute Working Paper Series wp2017n12, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    9. Calomiris, Charles W. & Larrain, Mauricio & Schmukler, Sergio L., 2021. "Capital inflows, equity issuance activity, and corporate investment," Journal of Financial Intermediation, Elsevier, vol. 46(C).
    10. Jorge Cuartas, 2017. "Neighborhood Crime Undermines Parenting: Violence in the Vicinity of Households as a Predictor of Aggressive Discipline," Documentos de trabajo 17646, Escuela de Gobierno - Universidad de los Andes.
    11. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    12. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    13. Ciccarelli, Carlo & De Fraja, Gianni & Vuri, Daniela, 2021. "Effects of passive smoking on prenatal and infant development: Lessons from the past," Economics & Human Biology, Elsevier, vol. 42(C).
    14. Mario J. Crucini & Gregor W. Smith, 2016. "Distance and Time Effects in Swedish Commodity Prices, 1732–1914," NBER Working Papers 22175, National Bureau of Economic Research, Inc.
    15. Federico Belotti & Edoardo Di Porto & Gianluca Santoni, 2021. "The effect of local taxes on firm performance: Evidence from geo‐referenced data," Journal of Regional Science, Wiley Blackwell, vol. 61(2), pages 492-510, March.
    16. Laurent R. Bergé, 2017. "Network proximity in the geography of research collaboration," Papers in Regional Science, Wiley Blackwell, vol. 96(4), pages 785-815, November.
    17. Hızıroğlu Aygün, Aysun & Kırdar, Murat Güray & Koyuncu, Murat & Stoeffler, Quentin, 2024. "Keeping refugee children in school and out of work: Evidence from the world's largest humanitarian cash transfer program," Journal of Development Economics, Elsevier, vol. 168(C).
    18. Adam M. Lavecchia & Philip Oreopoulos & Robert S. Brown, 2020. "Long-Run Effects from Comprehensive Student Support: Evidence from Pathways to Education," American Economic Review: Insights, American Economic Association, vol. 2(2), pages 209-224, June.
    19. Kümpel, Christian & Schneider, Udo, 2020. "Additional reimbursement for outpatient physicians treating nursing home residents reduces avoidable hospital admissions: Results of a reimbursement change in Germany," Health Policy, Elsevier, vol. 124(4), pages 470-477.
    20. Jongseok Ahn, 2020. "Unequal Loneliness in the Digitalized Classroom: Two Loneliness Effects of School Computers and Lessons for Sustainable Education in the E-Learning Era," Sustainability, MDPI, vol. 12(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323001871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.