IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i526p697-712.html
   My bibliography  Save this article

Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?

Author

Listed:
  • Ryan J. Tibshirani
  • Saharon Rosset

Abstract

Nearly all estimators in statistical prediction come with an associated tuning parameter, in one way or another. Common practice, given data, is to choose the tuning parameter value that minimizes a constructed estimate of the prediction error of the estimator; we focus on Stein’s unbiased risk estimator, or SURE, which forms an unbiased estimate of the prediction error by augmenting the observed training error with an estimate of the degrees of freedom of the estimator. Parameter tuning via SURE minimization has been advocated by many authors, in a wide variety of problem settings, and in general, it is natural to ask: what is the prediction error of the SURE-tuned estimator? An obvious strategy would be simply use the apparent error estimate as reported by SURE, that is, the value of the SURE criterion at its minimum, to estimate the prediction error of the SURE-tuned estimator. But this is no longer unbiased; in fact, we would expect that the minimum of the SURE criterion is systematically biased downwards for the true prediction error. In this work, we define the excess optimism of the SURE-tuned estimator to be the amount of this downward bias in the SURE minimum. We argue that the following two properties motivate the study of excess optimism: (i) an unbiased estimate of excess optimism, added to the SURE criterion at its minimum, gives an unbiased estimate of the prediction error of the SURE-tuned estimator; (ii) excess optimism serves as an upper bound on the excess risk, that is, the difference between the risk of the SURE-tuned estimator and the oracle risk (where the oracle uses the best fixed tuning parameter choice). We study excess optimism in two common settings: shrinkage estimators and subset regression estimators. Our main results include a James–Stein-like property of the SURE-tuned shrinkage estimator, which is shown to dominate the MLE; and both upper and lower bounds on excess optimism for SURE-tuned subset regression. In the latter setting, when the collection of subsets is nested, our bounds are particularly tight, and reveal that in the case of no signal, the excess optimism is always in between 0 and 10 degrees of freedom, regardless of how many models are being selected from. Supplementary materials for this article are available online.

Suggested Citation

  • Ryan J. Tibshirani & Saharon Rosset, 2019. "Excess Optimism: How Biased is the Apparent Error of an Estimator Tuned by SURE?," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 697-712, April.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:697-712
    DOI: 10.1080/01621459.2018.1429276
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1429276
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1429276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Momin M. Malik, 2020. "A Hierarchy of Limitations in Machine Learning," Papers 2002.05193, arXiv.org, revised Feb 2020.
    2. Kepplinger, David, 2023. "Robust variable selection and estimation via adaptive elastic net S-estimators for linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    3. Minami, Kentaro, 2020. "Degrees of freedom in submodular regularization: A computational perspective of Stein’s unbiased risk estimate," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:697-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.