IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v179y2023ics0167947322002316.html
   My bibliography  Save this article

Mixture models with decreasing weights

Author

Listed:
  • Hatjispyros, Spyridon J.
  • Merkatas, Christos
  • Walker, Stephen G.

Abstract

Decreasing weight prior distributions for mixture models play an important role in nonparametric Bayesian inference. Various random probability measures with decreasing weights have been previously explored and it has been shown that they provide an efficient alternative to the more traditional Dirichlet process mixture model. This ordering of the weights implicitly alleviates the so-called label switching problem, as larger weights correspond to larger groups. A general procedure to define any decreasing weights model based on a characterization of a discrete random variable which also allows for an easy and generic sampling algorithm for estimating the model is provided. An exact representation for the number of expected components is given. Finally, the performance of the mixture model on simulated data sets is investigated numerically.

Suggested Citation

  • Hatjispyros, Spyridon J. & Merkatas, Christos & Walker, Stephen G., 2023. "Mixture models with decreasing weights," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002316
    DOI: 10.1016/j.csda.2022.107651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002316
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ongaro, Andrea & Cattaneo, Carla, 2004. "Discrete random probability measures: a general framework for nonparametric Bayesian inference," Statistics & Probability Letters, Elsevier, vol. 67(1), pages 33-45, March.
    2. De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    3. Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.
    4. Diane L. Evans & Lawrence M. Leemis & John H. Drew, 2006. "The Distribution of Order Statistics for Discrete Random Variables with Applications to Bootstrapping," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 19-30, February.
    5. Mena, Ramsés H. & Walker, Stephen G., 2012. "An EPPF from independent sequences of geometric random variables," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1059-1066.
    6. repec:dau:papers:123456789/1906 is not listed on IDEAS
    7. Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    2. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    3. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    4. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    5. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    6. Hong Sun & Yan Li, 2023. "Optimal Acquisition and Production Policies for Remanufacturing with Quality Grading," Mathematics, MDPI, vol. 11(7), pages 1-21, March.
    7. Agustín G. Nogales, 2022. "On Consistency of the Bayes Estimator of the Density," Mathematics, MDPI, vol. 10(4), pages 1-6, February.
    8. Iksanov, Alexander & Kotelnikova, Valeriya, 2022. "Small counts in nested Karlin’s occupancy scheme generated by discrete Weibull-like distributions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 283-320.
    9. Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
    10. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    11. I. Votsi & G. Gayraud & V. S. Barbu & N. Limnios, 2021. "Hypotheses testing and posterior concentration rates for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 707-732, October.
    12. Dmitry B. Rokhlin, 2020. "Relative utility bounds for empirically optimal portfolios," Papers 2006.05204, arXiv.org.
    13. Sergei Seleznev, 2019. "Truncated priors for tempered hierarchical Dirichlet process vector autoregression," Bank of Russia Working Paper Series wps47, Bank of Russia.
    14. Moyu Liao, 2024. "Robust Bayesian Method for Refutable Models," Papers 2401.04512, arXiv.org, revised Sep 2024.
    15. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    16. Christopher D. Walker, 2023. "Parametrization, Prior Independence, and the Semiparametric Bernstein-von Mises Theorem for the Partially Linear Model," Papers 2306.03816, arXiv.org, revised Feb 2024.
    17. Walker, Stephen G., 2023. "Comparing weak and strong convergence of density functions," Statistics & Probability Letters, Elsevier, vol. 200(C).
    18. Petrova, Katerina, 2022. "Asymptotically valid Bayesian inference in the presence of distributional misspecification in VAR models," Journal of Econometrics, Elsevier, vol. 230(1), pages 154-182.
    19. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.
    20. Kaplan, David M. & Zhuo, Longhao, 2021. "Frequentist properties of Bayesian inequality tests," Journal of Econometrics, Elsevier, vol. 221(1), pages 312-336.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.