IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v179y2023ics0167947322002316.html
   My bibliography  Save this article

Mixture models with decreasing weights

Author

Listed:
  • Hatjispyros, Spyridon J.
  • Merkatas, Christos
  • Walker, Stephen G.

Abstract

Decreasing weight prior distributions for mixture models play an important role in nonparametric Bayesian inference. Various random probability measures with decreasing weights have been previously explored and it has been shown that they provide an efficient alternative to the more traditional Dirichlet process mixture model. This ordering of the weights implicitly alleviates the so-called label switching problem, as larger weights correspond to larger groups. A general procedure to define any decreasing weights model based on a characterization of a discrete random variable which also allows for an easy and generic sampling algorithm for estimating the model is provided. An exact representation for the number of expected components is given. Finally, the performance of the mixture model on simulated data sets is investigated numerically.

Suggested Citation

  • Hatjispyros, Spyridon J. & Merkatas, Christos & Walker, Stephen G., 2023. "Mixture models with decreasing weights," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002316
    DOI: 10.1016/j.csda.2022.107651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002316
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ongaro, Andrea & Cattaneo, Carla, 2004. "Discrete random probability measures: a general framework for nonparametric Bayesian inference," Statistics & Probability Letters, Elsevier, vol. 67(1), pages 33-45, March.
    2. De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    3. Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.
    4. Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, October.
    5. Diane L. Evans & Lawrence M. Leemis & John H. Drew, 2006. "The Distribution of Order Statistics for Discrete Random Variables with Applications to Bootstrapping," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 19-30, February.
    6. Mena, Ramsés H. & Walker, Stephen G., 2012. "An EPPF from independent sequences of geometric random variables," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1059-1066.
    7. repec:dau:papers:123456789/1906 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    2. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    3. José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
    4. David Bergman & Carlos Cardonha & Jason Imbrogno & Leonardo Lozano, 2023. "Optimizing the Expected Maximum of Two Linear Functions Defined on a Multivariate Gaussian Distribution," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 304-317, March.
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    6. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
    7. Reiß, Markus & Schmidt-Hieber, Johannes, 2020. "Posterior contraction rates for support boundary recovery," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6638-6656.
    8. Dmitry B. Rokhlin, 2021. "Relative utility bounds for empirically optimal portfolios," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 437-462, June.
    9. Suzanne Sniekers & Aad Vaart, 2020. "Adaptive Bayesian credible bands in regression with a Gaussian process prior," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 386-425, August.
    10. Shota Gugushvili & Frank van der Meulen & Moritz Schauer & Peter Spreij, 2018. "Nonparametric Bayesian volatility estimation," Papers 1801.09956, arXiv.org, revised Mar 2019.
    11. Martin Burda & Remi Daviet, 2023. "Hamiltonian sequential Monte Carlo with application to consumer choice behavior," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
    12. Hong Sun & Yan Li, 2023. "Optimal Acquisition and Production Policies for Remanufacturing with Quality Grading," Mathematics, MDPI, vol. 11(7), pages 1-21, March.
    13. Agustín G. Nogales, 2022. "On Consistency of the Bayes Estimator of the Density," Mathematics, MDPI, vol. 10(4), pages 1-6, February.
    14. Iksanov, Alexander & Kotelnikova, Valeriya, 2022. "Small counts in nested Karlin’s occupancy scheme generated by discrete Weibull-like distributions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 283-320.
    15. Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
    16. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    17. I. Votsi & G. Gayraud & V. S. Barbu & N. Limnios, 2021. "Hypotheses testing and posterior concentration rates for semi-Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 707-732, October.
    18. Zach Dietz & William Lippitt & Sunder Sethuraman, 2023. "Stick-Breaking processes, Clumping, and Markov Chain Occupation Laws," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 129-171, February.
    19. Francesco Denti & Michele Guindani & Fabrizio Leisen & Antonio Lijoi & William Duncan Wadsworth & Marina Vannucci, 2021. "Two‐group Poisson‐Dirichlet mixtures for multiple testing," Biometrics, The International Biometric Society, vol. 77(2), pages 622-633, June.
    20. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.