IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v178y2023ics0167947322001992.html
   My bibliography  Save this article

Novel multiplier bootstrap tests for high-dimensional data with applications to MANOVA

Author

Listed:
  • Chakraborty, Nilanjan
  • Sakhanenko, Lyudmila

Abstract

New bootstrap tests are proposed for linear hypotheses testing of high-dimensional means. In particular, they handle multiple-sample one- and two-way MANOVA tests with unequal cell sizes and unequal unknown cell covariances, as well as contrast tests in elegant and unified way. New tests are compared theoretically and on simulations studies with existing popular contemporary tests. They enjoy consistency, computational efficiency, very mild moment/tail conditions. They avoid the estimation of correlation or precision matrices, and allow the dimension to grow with sample size exponentially. Additionally, they allow the number of groups and the sparsity to grow with the sample size exponentially, thus broadening their applicability.

Suggested Citation

  • Chakraborty, Nilanjan & Sakhanenko, Lyudmila, 2023. "Novel multiplier bootstrap tests for high-dimensional data with applications to MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001992
    DOI: 10.1016/j.csda.2022.107619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001992
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schott, James R., 2007. "Some high-dimensional tests for a one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1825-1839, October.
    2. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    3. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    4. Watanabe, Hiroki & Hyodo, Masashi & Nakagawa, Shigekazu, 2020. "Two-way MANOVA with unequal cell sizes and unequal cell covariance matrices in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    5. Zhang, Yi-Chen & Sakhanenko, Lyudmila, 2019. "The naive Bayes classifier for functional data," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 137-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    3. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    4. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    5. Huiqin Li & Jiang Hu & Zhidong Bai & Yanqing Yin & Kexin Zou, 2017. "Test on the linear combinations of mean vectors in high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 188-208, March.
    6. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Mingxiang Cao & Yuanjing He, 2022. "A high-dimensional test on linear hypothesis of means under a low-dimensional factor model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 557-572, July.
    8. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    9. Lixiu Wu & Jiang Hu, 2024. "Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 579-615, August.
    10. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    11. Muni S. Srivastava & Tatsuya Kubokawa, 2011. "Tests for Multivariate Analysis of Variance in High Dimension Under Non-Normality," CIRJE F-Series CIRJE-F-831, CIRJE, Faculty of Economics, University of Tokyo.
    12. J. Cuesta-Albertos & M. Febrero-Bande, 2010. "A simple multiway ANOVA for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 537-557, November.
    13. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    14. M. Rauf Ahmad, 2019. "A unified approach to testing mean vectors with large dimensions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 593-618, December.
    15. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    16. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    17. Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
    18. Abbas, Khizar & Xie, Xiaoqing & Xu, Deyi & Butt, Khalid Manzoor, 2021. "Assessing an empirical relationship between energy poverty and domestic health issues: A multidimensional approach," Energy, Elsevier, vol. 221(C).
    19. Zhang, Qiuyan & Wang, Chen & Zhang, Baoxue & Yang, Hu, 2024. "An RIHT statistic for testing the equality of several high-dimensional mean vectors under homoskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    20. Bodnar, Olha & Touli, Elena Farahbakhsh, 2023. "Exact test theory in Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    More about this item

    Keywords

    Bootstrap; MANOVA; GLHT;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.