IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i524p1601-1611.html
   My bibliography  Save this article

Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework

Author

Listed:
  • Xiaoxiao Sun
  • Pang Du
  • Xiao Wang
  • Ping Ma

Abstract

Many scientific studies collect data where the response and predictor variables are both functions of time, location, or some other covariate. Understanding the relationship between these functional variables is a common goal in these studies. Motivated from two real-life examples, we present in this article a function-on-function regression model that can be used to analyze such kind of functional data. Our estimator of the 2D coefficient function is the optimizer of a form of penalized least squares where the penalty enforces a certain level of smoothness on the estimator. Our first result is the representer theorem which states that the exact optimizer of the penalized least squares actually resides in a data-adaptive finite-dimensional subspace although the optimization problem is defined on a function space of infinite dimensions. This theorem then allows us an easy incorporation of the Gaussian quadrature into the optimization of the penalized least squares, which can be carried out through standard numerical procedures. We also show that our estimator achieves the minimax convergence rate in mean prediction under the framework of function-on-function regression. Extensive simulation studies demonstrate the numerical advantages of our method over the existing ones, where a sparse functional data extension is also introduced. The proposed method is then applied to our motivating examples of the benchmark Canadian weather data and a histone regulation study. Supplementary materials for this article are available online.

Suggested Citation

  • Xiaoxiao Sun & Pang Du & Xiao Wang & Ping Ma, 2018. "Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1601-1611, October.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1601-1611
    DOI: 10.1080/01621459.2017.1356320
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1356320
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1356320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zhiyang, 2021. "Fast implementation of partial least squares for function-on-function regression," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Centofanti, Fabio & Fontana, Matteo & Lepore, Antonio & Vantini, Simone, 2022. "Smooth LASSO estimator for the Function-on-Function linear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    3. Ruiyan Luo & Xin Qi, 2022. "Restricted function‐on‐function linear regression model," Biometrics, The International Biometric Society, vol. 78(3), pages 1031-1044, September.
    4. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Cui, Xia & Lin, Hongmei & Lian, Heng, 2020. "Partially functional linear regression in reproducing kernel Hilbert spaces," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    6. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:524:p:1601-1611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.