Fast computation of robust subspace estimators
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2018.12.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abul Naga, Ramses & Antille, Gerard, 1990. "Stability of robust and non-robust principal components analysis," Computational Statistics & Data Analysis, Elsevier, vol. 10(2), pages 169-174, October.
- N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
- Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
- Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
- Yiyuan She & Shijie Li & Dapeng Wu, 2016. "Robust Orthogonal Complement Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 763-771, April.
- Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
- N. A. Campbell, 1980. "Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 231-237, November.
- Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
- Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
- Serneels, Sven & Verdonck, Tim, 2008. "Principal component analysis for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1712-1727, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dries Cornilly & Lise Tubex & Stefan Van Aelst & Tim Verdonck, 2024. "Robust and sparse logistic regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 663-679, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
- B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
- Sven Serneels, 2019. "Projection pursuit based generalized betas accounting for higher order co-moment effects in financial market analysis," Papers 1908.00141, arXiv.org.
- Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
- Luca Greco & Alessio Farcomeni, 2016. "A plug-in approach to sparse and robust principal component analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 449-481, September.
- Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
- M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
- Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
- Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
- Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
- Kondylis, Athanassios & Hadi, Ali S., 2006. "Derived components regression using the BACON algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 556-569, November.
- Choulakian, V. & Allard, J. & Almhana, J., 2006. "Robust centroid method," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 737-746, November.
- Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
- Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
- Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
- Hubert, Mia & Rousseeuw, Peter & Verdonck, Tim, 2009. "Robust PCA for skewed data and its outlier map," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2264-2274, April.
- Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
- Serneels, Sven & Verdonck, Tim, 2009. "Principal component regression for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3855-3863, September.
More about this item
Keywords
Deterministic algorithm; High-dimensional data; Least trimmed squares; M-scale; Principal component analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:134:y:2019:i:c:p:171-185. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.