IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v115y2017icp281-293.html
   My bibliography  Save this article

Function compositional adjustments of conditional quantile curves

Author

Listed:
  • Kuk, Anthony Y.C.

Abstract

To adjust the quantile function estimated using a parametric model, the parametric function is composed with the quantile function of the probability integral transformed data. One round of bandwidth selection suffices as adjustments at all quantile levels can be obtained by smoothing the same set of probability integral transformed data. This is in contrast to the customary additive adjustment which requires the user to transform the data differently for estimating different quantiles. Another advantage of the proposed method is that it yields a diagnostic plot useful in assessing the goodness of fit of the assumed model. Compared with the additive approach, function compositional adjustment pays more attention to the fact that the quantity being estimated is a quantile function. As a result, it enjoys intrinsically some desirable properties such as range preservation and invariance to increasing transformation. It is also more amenable to the study of monotonicity as the composition of two quantile functions is a quantile function. In further support of the new adjustment method, Taylor series approximation and results from three simulation studies suggest that the adjusted estimator is robust to model misspecification, and can be more efficient than direct nonparametric estimation. We illustrate the proposed adjustment method using two examples from water resources and human biomonitoring studies.

Suggested Citation

  • Kuk, Anthony Y.C., 2017. "Function compositional adjustments of conditional quantile curves," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 281-293.
  • Handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:281-293
    DOI: 10.1016/j.csda.2017.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731730097X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    2. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
    5. El Ghouch, Anouar & Genton, Marc G., 2009. "Local Polynomial Quantile Regression With Parametric Features," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1416-1429.
    6. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    7. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Noufaily & M. C. Jones, 2013. "Parametric quantile regression based on the generalized gamma distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 723-740, November.
    2. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    3. Marcelo Cajias & Philipp Freudenreich & Anna Heller & Wolfgang Schaefers, 2018. "Censored Quantile Regressions and the Determinants of Real Estate Liquidity," ERES eres2018_203, European Real Estate Society (ERES).
    4. Sungwan Bang & Soo-Heang Eo & Yong Mee Cho & Myoungshic Jhun & HyungJun Cho, 2016. "Non-crossing weighted kernel quantile regression with right censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 100-121, January.
    5. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    6. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    7. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    8. Liang Yang & Zhengxiao Li & Shengwang Meng, 2020. "Risk Loadings in Classification Ratemaking," Papers 2002.01798, arXiv.org, revised Jan 2022.
    9. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    10. Alexander Sohn & Nadja Klein & Thomas Kneib, 2014. "A New Semiparametric Approach to Analysing Conditional Income Distributions," SOEPpapers on Multidisciplinary Panel Data Research 676, DIW Berlin, The German Socio-Economic Panel (SOEP).
    11. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
    12. Zhilova, Mayya, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers 2015-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    14. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    15. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    16. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    17. VAN KERM Philippe & YU Seunghee & CHOE Chung, 2014. "Wage differentials between native, immigrant and cross-border workers: Evidence and model comparisons," LISER Working Paper Series 2014-05, Luxembourg Institute of Socio-Economic Research (LISER).
    18. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    19. Abdelaati Daouia & Gilles Stupfler, 2024. "Extremile Regression," Post-Print hal-04697061, HAL.
    20. Marcelo Bourguignon & Diego I. Gallardo & Helton Saulo, 2024. "Parametric Quantile Beta Regression Model," International Statistical Review, International Statistical Institute, vol. 92(1), pages 106-129, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:281-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.