IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v68y2014icp78-88.html
   My bibliography  Save this article

Analysis of effect of random perturbation on dynamic response of gear transmission system

Author

Listed:
  • Wang, Jingyue
  • Wang, Haotian
  • Guo, Lixin

Abstract

In order to investigate the effects of random perturbation of a low-frequency excitation caused by torque fluctuations, gear damping ratio, gear backlash, meshing frequency and meshing stiffness, the random dynamic model of a single pair of three-degree-of-freedom spur gear transmission system is established. With gear meshing frequency changing, the dynamic characteristics of the gear transmission system were analyzed by bifurcation diagram, phase diagram, time course diagram and Poincaré map of the system. The effects of random perturbation caused by a low-frequency excitation caused by torque fluctuations, gear damping ratio, gear backlash, meshing frequency and meshing stiffness were comparative analyzed. Numerical simulation shows that the gear transmission system with nonlinear clearance exists rich period-doubling bifurcation phenomenon. With the increasing of the gear meshing frequency, gear transmission system will be from the chaotic motion to periodic motion by inverse period-doubling bifurcation. The effect of the meshing frequency random perturbation on the gear transmission system movement is largest. On the contrary, the effect of the meshing stiffness random perturbation on the system is minimum.

Suggested Citation

  • Wang, Jingyue & Wang, Haotian & Guo, Lixin, 2014. "Analysis of effect of random perturbation on dynamic response of gear transmission system," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 78-88.
  • Handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:78-88
    DOI: 10.1016/j.chaos.2014.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077914001404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2014.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lijie & Feng, Yu & Liu, Yongjian, 2016. "Dynamics of the stochastic Lorenz-Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 670-678.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:68:y:2014:i:c:p:78-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.