IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i4p941-949.html
   My bibliography  Save this article

Relativistic field equations and nonlinear dynamics

Author

Listed:
  • Tanaka, Yosuke
  • Shudo, Takefumi
  • Yosinaga, Tetsutaro
  • Kimura, Hiroshi

Abstract

We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. By integrating the space component of the Einstein–Friedmann equation, we have derived the Higgs-type W-shape potential [U=(1/4)(λ−κp)x2−(1/8)ζx4], and classified the solutions in the Einstein–Friedmann equation. We have shown that there occurs chaotic behaviours in case the following conditions are satisfied;(i)the expanding ratio h=x˙/x<0,(ii)the curvature ζ=−1, and(iii)the cosmological constant λ<κp.

Suggested Citation

  • Tanaka, Yosuke & Shudo, Takefumi & Yosinaga, Tetsutaro & Kimura, Hiroshi, 2008. "Relativistic field equations and nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 941-949.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:4:p:941-949
    DOI: 10.1016/j.chaos.2008.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790800009X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
    2. El Naschie, M.S., 2005. "The two-slit experiment as the foundation of E-infinity of high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 509-514.
    3. Tanaka, Yosuke & Mizuno, Yuzi & Kado, Tatsuhiko, 2005. "Chaotic dynamics in the Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 407-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tanaka, Yosuke & Nakano, Shingo & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2159-2173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Yosuke & Mizuno, Yuji & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Nonlinear dynamics in the Einstein–Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 533-549.
    2. Tanaka, Yosuke & Nakano, Shingo & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2159-2173.
    3. Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
    4. Khastan, A. & Ivaz, K., 2009. "Numerical solution of fuzzy differential equations by Nyström method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 859-868.
    5. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    6. Gregori, V. & Romaguera, S. & Veeramani, P., 2006. "A note on intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 902-905.
    7. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    8. Miheţ, Dorel, 2009. "A note on a fixed point theorem in Menger probabilistic quasi-metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2349-2352.
    9. Caldas, Miguel & Jafari, Saeid, 2009. "A new decomposition of β-open functions," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 10-12.
    10. Ekici, Erdal, 2008. "On contra πg-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 71-81.
    11. Ekici, Erdal, 2007. "On almost πgp-continuous functions," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1935-1944.
    12. Sedghi, Shaban & Shobe, Nabi & Žikić-Došenović, Tatjana, 2009. "A common fixed point theorem in two complete fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2590-2596.
    13. Ćirić, Ljubomir B. & Ješić, Siniša N. & Ume, Jeong Sheok, 2008. "The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 781-791.
    14. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.
    15. Deschrijver, Glad & O’Regan, Donal & Saadati, Reza & Mansour Vaezpour, S., 2009. "L-Fuzzy Euclidean normed spaces and compactness," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 40-45.
    16. Zahran, A.M. & Abd-Allah, M. Azab. & Abd El-Rahman, Abd El-Nasser G., 2009. "Fuzzy weakly preopen (preclosed) function in Kubiak–Šostak fuzzy topological spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1158-1168.
    17. Abbasbandy, S. & Babolian, E. & Alavi, M., 2007. "Numerical method for solving linear Fredholm fuzzy integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 138-146.
    18. Dušan Rakić & Tatjana Došenović & Zoran D. Mitrović & Manuel de la Sen & Stojan Radenović, 2020. "Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces," Mathematics, MDPI, vol. 8(2), pages 1-15, February.
    19. Soleimani-damaneh, M., 2009. "Maximal flow in possibilistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 370-375.
    20. Lael, Fatemeh & Nourouzi, Kourosh, 2008. "Some results on the IF-normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 931-939.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:4:p:941-949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.