IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i4p1996-2007.html
   My bibliography  Save this article

The universal cardinal ordering of fixed points

Author

Listed:
  • San Martín, Jesús
  • Moscoso, Ma José
  • González Gómez, A.

Abstract

We present the theorem which determines, by a permutation, the cardinal ordering of fixed points for any orbit of a period doubling cascade. The inverse permutation generates the orbit and the symbolic sequence of the orbit is obtained as a corollary. Interestingly enough, it is important to point that this theorem needs no previous information about any other orbit; also the cardinal ordering is achieved automatically with no need to compare numerical values associated with every point of the orbit (as would be the case if kneading theory were used).

Suggested Citation

  • San Martín, Jesús & Moscoso, Ma José & González Gómez, A., 2009. "The universal cardinal ordering of fixed points," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 1996-2007.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:1996-2007
    DOI: 10.1016/j.chaos.2009.03.184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letellier, Christophe & Bennoud, Mounia & Martel, Gilles, 2007. "Intermittency and period-doubling cascade on tori in a bimode laser model," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 782-794.
    2. Toth, Damon J.A., 2008. "Strong resonance and chaos in a single-species chemostat model with periodic pulsing of resource," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 55-69.
    3. Yu, Hengguo & Zhao, Min & Lv, Songjuan & Zhu, Lili, 2009. "Dynamic complexities in a parasitoid-host-parasitoid ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 39-48.
    4. Wang, Kaifa & Wang, Wendi & Liu, Xianning, 2006. "Viral infection model with periodic lytic immune response," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 90-99.
    5. Pastor, G. & Romera, M. & Álvarez, G. & Arroyo, D. & Montoya, F., 2007. "On periodic and chaotic regions in the Mandelbrot set," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 15-25.
    6. Zhang, Shuwen & Tan, Dejun & Chen, Lansun, 2006. "Chaotic behavior of a chemostat model with Beddington–DeAngelis functional response and periodically impulsive invasion," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 474-482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Zhenguo & Zhou, Yicang, 2012. "Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1133-1139.
    2. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    3. Pang, Guoping & Wang, Fengyan & Chen, Lansun, 2009. "Analysis of a viral disease model with saturated contact rate," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 17-27.
    4. Adhikari, Nabaraj & Sintunavarat, Wutiphol, 2024. "The Julia and Mandelbrot sets for the function zp−qz2+rz+sincw exhibit Mann and Picard–Mann orbits along with s-convexity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Ji, Yu & Min, Lequan & Zheng, Yu & Su, Yongmei, 2010. "A viral infection model with periodic immune response and nonlinear CTL response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2309-2316.
    6. Li, Zengshan & Chen, Diyi & Ma, Mengmeng & Zhang, Xinguang & Wu, Yonghong, 2017. "Feigenbaum's constants in reverse bifurcation of fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 116-123.
    7. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    8. Wu, Shi-Liang & Li, Wan-Tong, 2009. "Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1229-1239.
    9. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    10. Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
    11. Zhao, Min & Yu, Hengguo & Zhu, Jun, 2009. "Effects of a population floor on the persistence of chaos in a mutual interference host–parasitoid model," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1245-1250.
    12. Li, Wan-Tong & Wu, Shi-Liang, 2008. "Traveling waves in a diffusive predator–prey model with holling type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 476-486.
    13. Cai, Liming & Li, Xuezhi, 2009. "Stability and Hopf bifurcation in a delayed model for HIV infection of CD4+T cells," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 1-11.
    14. Yang, Junyuan & Zhang, Fengqin & Li, Xuezhi, 2009. "Epidemic model with vaccinated age that exhibits backward bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1721-1731.
    15. Dehghan, Mehdi & Nasri, Mostafa & Razvan, Mohammad Reza, 2007. "Global stability of a deterministic model for HIV infection in vivo," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1225-1238.
    16. Wen, Luosheng & Yang, Xiaofan, 2008. "Global stability of a delayed SIRS model with temporary immunity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 221-226.
    17. Zhang, Zhonghua & Peng, Jigen & Zhang, Juan, 2009. "Melnikov method to a bacteria-immunity model with bacterial quorum sensing mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 414-420.
    18. Geum, Young Hee & Hare, Kevin G., 2009. "Groebner basis, resultants and the generalized Mandelbrot set," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1016-1023.
    19. Chiou, Juing-Shian & Cheng, Chun-Ming, 2009. "Stabilization analysis of the switched discrete-time systems using Lyapunov stability theorem and genetic algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 751-759.
    20. Gao, Ting & Wang, Wendi & Liu, Xianning, 2011. "Mathematical analysis of an HIV model with impulsive antiretroviral drug doses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 653-665.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:4:p:1996-2007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.