IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i1p335-340.html
   My bibliography  Save this article

Amplitude control of limit cycles in Langford system

Author

Listed:
  • Cui, Yan
  • Liu, Suhua
  • Tang, Jiashi
  • Meng, Yimin

Abstract

In this paper, we investigate the control of amplitude of limit cycle emerging from the Hopf bifurcation in Langford system under a nonlinear feedback controller. Explicit nonlinear control formulae and amplitude approximations in terms of control gains are derived from the center manifold theory and normal form reduction. The formulae and expressions for the Langford system present a convenient approach to obtain an effective analytical control and predict the amplitude of limit cycles in this system.

Suggested Citation

  • Cui, Yan & Liu, Suhua & Tang, Jiashi & Meng, Yimin, 2009. "Amplitude control of limit cycles in Langford system," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 335-340.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:335-340
    DOI: 10.1016/j.chaos.2008.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908005328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Guilin & Xu, Daolin & Xie, Jianhua, 2005. "Controlling Hopf bifurcations of discrete-time systems in resonance," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1865-1877.
    2. Wang, S. & Yu, P., 2005. "Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1317-1335.
    3. Yassen, M.T., 2005. "Controlling chaos and synchronization for new chaotic system using linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 913-920.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    2. J. Humberto Pérez-Cruz & Pedro A. Tamayo-Meza & Maricela Figueroa & Ramón Silva-Ortigoza & Mario Ponce-Silva & R. Rivera-Blas & Mario Aldape-Pérez, 2019. "Exponential Synchronization of Chaotic Xian System Using Linear Feedback Control," Complexity, Hindawi, vol. 2019, pages 1-10, July.
    3. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Bifurcation control of the Hodgkin–Huxley equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 217-224.
    4. Sun, Mei & Tian, Lixin & Jiang, Shumin & Xu, Jun, 2007. "Feedback control and adaptive control of the energy resource chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1725-1734.
    5. Zhang, Ting & Wang, Jiang & Fei, Xiangyang & Deng, Bin, 2007. "Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 194-202.
    6. Liu, Yong & Ren, Guodong & Zhou, Ping & Hayat, Tasawar & Ma, Jun, 2019. "Synchronization in networks of initially independent dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 370-380.
    7. Yassen, M.T., 2008. "Synchronization hyperchaos of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 465-475.
    8. Singh, Vimal, 2008. "Novel frequency-domain criterion for elimination of limit cycles in a class of digital filters with single saturation nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 178-183.
    9. Chen, Heng-Hui, 2009. "Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 466-473.
    10. Li, Lixiang & Peng, Haipeng & Yang, Yixian & Wang, Xiangdong, 2009. "On the chaotic synchronization of Lorenz systems with time-varying lags," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 783-794.
    11. Yu, Yongguang & Li, Han-Xiong & Duan, Jian, 2009. "Chaos synchronization of a unified chaotic system via partial linearization," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 457-463.
    12. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Analysis and control of the bifurcation of Hodgkin–Huxley model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 247-256.
    13. Sharma, B.B. & Kar, I.N., 2009. "Contraction theory based adaptive synchronization of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2437-2447.
    14. Wang, S. & Yu, P., 2006. "Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 606-621.
    15. Yu, P. & Han, M., 2007. "On limit cycles of the Liénard equation with Z2 symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 617-630.
    16. Singh, Vimal, 2007. "A new frequency-domain criterion for elimination of limit cycles in fixed-point state-space digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 813-816.
    17. Sharma, B.B. & Kar, I.N., 2009. "Parametric convergence and control of chaotic system using adaptive feedback linearization," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1475-1483.
    18. Verichev, Nikolai N. & Verichev, Stanislav N. & Wiercigroch, Marian, 2009. "Asymptotic theory of chaotic synchronization for dissipative-coupled dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 752-763.
    19. Singh, Vimal, 2007. "Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1448-1453.
    20. Tian, Lixin & Xu, Jun & Sun, Mei & Li, Xiuming, 2009. "On a new time-delayed feedback control of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 831-839.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:1:p:335-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.